Skip to main content
Log in

αB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study was carried out to observe the protective effects of αB-crystallin protein on hydrogen peroxide (H2O2)-induced injury in rat myocardial cells (H9c2) and to investigate the mechanisms of these protective effects at the cellular level, which could provide the experimental basis for future applications of αB-crystallin in the treatment of cardiovascular disease. Western blotting was used to measure the expression of αB-crystallin in cultured H9c2 cells in vitro. A αB-crystallin recombinant expression vector, pcDNA3.1-Cryab, was constructed to transfect H9c2 cells for the establishment of cells that stably expressed αB-crystallin. A tetrazolium-based colorimetric assay (MTT test) was used to measure changes in the viability of the H9c2 cells at 1, 2, 3 and 4 h after induced by 150 μM H2O2 to establish a model of H2O2 injury to cells. H2O2 was applied to H9c2 cells that were stably transfected with αB-crystallin, and the effect of αB-crystallin overexpression on the viability of myocardial cells subjected to H2O2-induced injury was measured by the MTT assay. The effect of αB-crystallin overexpression on the H2O2-induced injury of H9c2 cells was also analyzed by flow cytometry. The mitochondrial components and cytoplasmic components of H9c2 cells were separated, and western blotting was used to measure the effect of αB-crystallin overexpression on the release of cytochrome c from the mitochondria. Western blotting was also used to measure the effect of αB-crystallin overexpression on the expression of the anti-apoptosis protein Bcl-2 and components of the phosphatidylinositol 3-OH kinase (PI3K)/AKT pathway. The αB-crystallin recombinant expression vector pcDNA3.1-Cryab successfully transfected H9c2 cells, and H9c2 cells that were stably transfected with αB-crystallin were established after G418 selection. The measurements carried out by western blotting showed that αB-crystallin proteins are expressed in normal H9c2 cells, but the proteins’ expression was much higher in pcDNA3.1-Cryab transfected cells (P < 0.01). The MTT assays showed that 4 h of H2O2 treatment induced significant injury in H9c2 cells (P < 0.01), but αB-crystallin overexpression can effectively antagonize the H2O2-induced injury to H9c2 cells (P < 0.05). The results of flow cytometry analysis showed that αB-crystallin overexpression can significantly reduce apoptosis in H2O2-injured H9c2 cells (P < 0.05). The results of western blotting showed that αB-crystallin overexpression in myocardial cells can reduce the H2O2-induced release of cytochrome c from the mitochondria (P < 0.05), antagonize the H2O2-induced downregulation of Bcl-2 (P < 0.05) and magnify the decrease in phosphorylated AKT levels induced by H2O2 injury (P < 0.05). The overexpression of αB-crystallin has a protective effect on H2O2-injured H9c2 cells, and αB-crystallin can play a protective role by reducing apoptosis, reducing the release of cytochrome c from the mitochondria and antagonizing the downregulation of Bcl-2 expression. The protective effects of αB-crystallin may be related to the PI3K/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schoenhagen P, Hausleiter J, Achenbach S, Desai MY, Tuzcu EM (2011) Computed tomography in the evaluation for transcatheter aortic valve implantation (TAVI). Cardiovasc Diagn Ther 1:44–56

    Google Scholar 

  2. Gada H, Agarwal S, Marwick TH (2012) Perspective on the cost-effectiveness of transapical aortic valve implantation in high-risk patients: outcomes of a decision analytic model. Ann Cardiothorac Surg 1:145–155

    Google Scholar 

  3. Mampuya WM (2012) Cardiac rehabilitation past, present and future: an overview. Cardiovasc Diagn Ther 2:38–49

    Google Scholar 

  4. Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32:1552–1562

    Article  PubMed  CAS  Google Scholar 

  5. Feng Y, Wang Y, Cao N, Yang H, Wang Y (2012) Progenitor/stem cell transplantation for repair of myocardial infarction: hype or hope? Ann Palliat Med 1:65–77

    PubMed  Google Scholar 

  6. Fujita T, Ishikawa Y (2011) Apoptosis in heart failure. The role of the beta-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes. Circ J 75:1811–1818

    Article  PubMed  CAS  Google Scholar 

  7. Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis, in the heart. Circ Res 108:1017–1036

    Article  PubMed  CAS  Google Scholar 

  8. Sun Z (2012) Cardiac CT imaging in coronary artery disease: current status and future directions. Quant Imaging Med Surg 2:98–105

    PubMed  Google Scholar 

  9. Spillmann F, Van Linthout S, Tschope C (2012) Cardiac effects of HDL and its components on diabetic cardiomyopathy. Endocr Metab Immune Disord Drug Targets 12:132–147

    Article  PubMed  CAS  Google Scholar 

  10. Shi J, Abdelwahid E, Wei L (2011) Apoptosis in anthracycline cardiomyopathy. Curr Pediatr Rev 7:329–336

    Article  PubMed  CAS  Google Scholar 

  11. Tucka J, Bennett M, Littlewood T (2012) Cell death and survival signalling in the cardiovascular system. Front Biosci 17:248–261

    Article  PubMed  CAS  Google Scholar 

  12. Hollander JM, Baseler WA, Dabkowski ER (2011) Proteomic remodeling of mitochondria in heart failure. Congest Heart Fail 17:262–268

    Article  PubMed  CAS  Google Scholar 

  13. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181–H2190

    Article  PubMed  CAS  Google Scholar 

  14. Michaeli S (2012) Spliced leader RNA silencing (SLS): a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress. Parasit Vectors 5:107

    Article  PubMed  CAS  Google Scholar 

  15. Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53:421–436

    Article  PubMed  CAS  Google Scholar 

  16. Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183

    Article  PubMed  CAS  Google Scholar 

  17. Yu E, Mercer J, Bennett M (2012) Mitochondria in vascular disease. Cardiovasc Res 95:173–182

    Article  PubMed  CAS  Google Scholar 

  18. Chen JZ (2012) Targeted therapy of obesity-associated colon cancer. Transl Gastrointest Cancer 1:44–57

    CAS  Google Scholar 

  19. Huttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R et al (2012) Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 1817:598–609

    Article  PubMed  CAS  Google Scholar 

  20. Schneider G, Kramer OH (2011) NFkappaB/p53 crosstalk-a promising new therapeutic target. Biochim Biophys Acta 1815:90–103

    PubMed  CAS  Google Scholar 

  21. Tiligada E (2006) Nuclear translocation during the cross-talk between cellular stress, cell cycle and anticancer agents. Curr Med Chem 13:1317–1320

    Article  PubMed  CAS  Google Scholar 

  22. Vidyasagar A, Wilson NA, Djamali A (2012) Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 5:7

    Article  PubMed  Google Scholar 

  23. Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44:1622–1631

    Article  PubMed  CAS  Google Scholar 

  24. Hu Z, Li T (2008) HspB5/alphaB-crystallin: properties and current progress in neuropathy. Curr Neurovasc Res 5:143–152

    Article  PubMed  CAS  Google Scholar 

  25. Velotta JB, Kimura N, Chang SH, Chung J, Itoh S, Rothbard J, Yang PC, Steinman L, Robbins RC, Fischbein MP (2011) AlphaB-crystallin improves murine cardiac function and attenuates apoptosis in human endothelial cells exposed to ischemia-reperfusion. Ann Thorac Surg 91:1907–1913

    Article  PubMed  Google Scholar 

  26. Goplen D, Bougnaud S, Rajcevic U, Boe SO, Skaftnesmo KO, Voges J, Enger PO, Wang J, Tysnes BB, Laerum OD et al (2010) AlphaB-crystallin is elevated in highly infiltrative apoptosis-resistant glioblastoma cells. Am J Pathol 177:1618–1628

    Article  PubMed  CAS  Google Scholar 

  27. Sanbe A (2011) Molecular mechanisms of alpha-crystallinopathy and its therapeutic strategy. Biol Pharm Bull 34:1653–1658

    Article  PubMed  CAS  Google Scholar 

  28. Ecroyd H, Carver JA (2009) Crystallin proteins and amyloid fibrils. Cell Mol Life Sci 66:62–81

    Article  PubMed  CAS  Google Scholar 

  29. Barnett BP, Bressler J, Chen T, Hutchins GM, Crain BJ, Kaufmann WE (2011) AlphaB-crystallin negative astrocytic inclusions. Brain Dev 33:349–352

    Article  PubMed  Google Scholar 

  30. Wettstein G, Bellaye PS, Micheau O, Bonniaud P (2012) Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? Int J Biochem Cell Biol 44:1680–1686

    Article  PubMed  CAS  Google Scholar 

  31. Solares CA, Boyle GM, Brown I, Parsons PG, Panizza B (2010) Reduced alphaB-crystallin staining in perineural invasion of head and neck cutaneous squamous cell carcinoma. Otolaryngol Head Neck Surg 142:S15–S19

    Article  PubMed  Google Scholar 

  32. Goldfarb LG, Dalakas MC (2009) Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J Clin Invest 119:1806–1813

    Article  PubMed  CAS  Google Scholar 

  33. Arrigo AP, Simon S (2010) Expression and functions of heat shock proteins in the normal and pathological mammalian eye. Curr Mol Med 10:776–793

    Article  PubMed  CAS  Google Scholar 

  34. Andley UP (2009) Effects of alpha-crystallin on lens cell function and cataract pathology. Curr Mol Med 9:887–892

    Article  PubMed  CAS  Google Scholar 

  35. McGreal RS, Lee Kantorow W, Chauss DC, Wei J, Brennan LA, Kantorow M (2012) AlphaB-crystallin/sHSP protects cytochrome c and mitochondrial function against oxidative stress in lens and retinal cells. Biochim Biophys Acta 1820:921–930

    Article  PubMed  CAS  Google Scholar 

  36. Shin JH, Kim SW, Lim CM, Jeong JY, Piao CS, Lee JK (2009) AlphaB-crystallin suppresses oxidative stress-induced astrocyte apoptosis by inhibiting caspase-3 activation. Neurosci Res 64:355–361

    Article  PubMed  CAS  Google Scholar 

  37. Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP (2012) Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol. doi:org/10.1016/j.ijcard.2012.03.055

    PubMed  Google Scholar 

  38. Ong SB, Gustafsson AB (2012) New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res 94:190–196

    Article  PubMed  CAS  Google Scholar 

  39. Siu PM, Wang Y, Alway SE (2009) Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes. Life Sci 84:468–481

    Article  PubMed  CAS  Google Scholar 

  40. Wu Y, Wang D, Wang X, Wang Y, Ren F, Chang D, Chang Z, Jia B (2011) Caspase 3 is activated through caspase 8 instead of caspase 9 during H2O2-induced apoptosis in HeLa cells. Cell Physiol Biochem 27:539–546

    Article  PubMed  CAS  Google Scholar 

  41. De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16(Suppl 2):S17–S27

    Article  PubMed  Google Scholar 

  42. Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–146

    Article  PubMed  CAS  Google Scholar 

  43. Wang Z, Zhang H, Xu X, Shi H, Yu X, Wang X, Fu X, Hu H, Li X, Xiao J (2012) bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol Lett 212:137–146

    Article  PubMed  CAS  Google Scholar 

  44. Ye Z, Guo Q, Xia P, Wang N, Wang E, Yuan Y (2012) Sevoflurane postconditioning involves an up-regulation of HIF-1alpha and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Res 1463:63–74

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Yu, H., Liu, J. et al. αB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway. Mol Biol Rep 40, 2517–2526 (2013). https://doi.org/10.1007/s11033-012-2332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2332-2

Keywords

Navigation