Skip to main content
Log in

Meta-analyses of four eosinophil related gene variants in coronary heart disease

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The goal of our study is to assess the contribution of four eosinophil related gene variants (rs12619285, rs1420101, rs3184504 and rs4143832) to the risk of coronary heart disease (CHD). We conducted four meta-analyses of studies examining the association between four eosinophil related gene variants and the risk of CHD. A systematic search was conducted using MEDLINE, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI), Wanfang Chinese Periodical. A case–control study was conducted between 162 CHD cases and 119 non-CHD controls to explore their contribution to CHD. For rs3184504 of SH2B3 gene, the meta-analysis was performed among 19 study stages among 94,555 participants. Significant association between rs3184504 and CHD risk was observed in European and South Asian populations (OR = 1.13, 95 % CI = 1.10–1.16, p < 0.0001, fixed-effect method). For the other SNPs (rs12619285, rs1420101, and rs4143832), we combined our case–control data with the previous studies and found no association of them with the risk of CHD. No significant contribution of the four genetic variants to CHD was observed in Han Chinese (p > 0.05). In conclusion, our results supported a significant association between rs3184504 of SH2B3 gene and the risk of CHD in Europeans and South Asians, although we were unable to observe association between the four variants and the risk of CHD in Han Chinese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SNP:

Single nucleotide polymorphism

CAC:

Coronary artery calcification

CHD:

Coronary heart disease

MI:

Myocardial infarction

HWE:

Hardy–Weinberg equilibrium

References

  1. Pezzella AT (2010) Global aspects of cardiothoracic surgery with focus on developing countries. Asian Cardiovasc Thorac Ann 18:299–310

    Article  PubMed  Google Scholar 

  2. Hsu J, Smith JD (2012) Genome-wide studies of gene expression relevant to coronary artery disease. Curr Opin Cardiol 27:210–213

    Article  PubMed  Google Scholar 

  3. Roberts R, Stewart AF (2012) The genetics of coronary artery disease. Curr Opin Cardiol 27:221–227

    Article  PubMed  Google Scholar 

  4. Roberts R, Chen L, Wells GA, Stewart AF (2011) Recent success in the discovery of coronary artery disease genes. Can J Physiol Pharmacol 89:609–615

    Article  PubMed  Google Scholar 

  5. Swerdlow DI, Holmes MV, Harrison S, Humphries SE (2012) The genetics of coronary heart disease. Br Med Bull 102:59–77

    Article  PubMed  CAS  Google Scholar 

  6. Madjid M, Awan I, Willerson JT, Casscells SW (2004) Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol 44:1945–1956

    Article  PubMed  Google Scholar 

  7. Niccoli G, Cosentino N (2012) Eosinophils: a new player in coronary atherosclerotic disease. Hypertens Res 35:269–271

    Article  PubMed  Google Scholar 

  8. Gudbjartsson DF, Bjornsdottir US, Halapi E et al (2009) Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 41:342–347

    Article  PubMed  CAS  Google Scholar 

  9. Kelley CM, Ikeda T, Koipally J et al (1998) Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol 8:508–515

    Article  PubMed  CAS  Google Scholar 

  10. Martinez-Moczygemba M, Huston DP (2003) Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J Allergy Clin Immunol 112:653–665, quiz 666

    Google Scholar 

  11. Corren J (2012) Inhibition of interleukin-5 for the treatment of eosinophilic diseases. Discov Med 13:305–312

    PubMed  Google Scholar 

  12. IBC 50K CAD Consortium (2011) Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet 7:e1002260

    Article  Google Scholar 

  13. Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    Article  PubMed  CAS  Google Scholar 

  14. Bhardwaj A, Januzzi JL Jr (2010) ST2: a novel biomarker for heart failure. Expert Rev Mol Diagn 10:459–464

    Article  PubMed  CAS  Google Scholar 

  15. Shah RV, Januzzi JL Jr (2010) ST2: a novel remodeling biomarker in acute and chronic heart failure. Curr Heart Fail Rep 7:9–14

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg EO, Shimpo M, De Keulenaer GW et al (2002) Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106:2961–2966

    Article  PubMed  CAS  Google Scholar 

  17. Tsapaki A, Zaravinos A, Apostolakis S et al (2010) Genetic variability of the distal promoter of the ST2 gene is associated with angiographic severity of coronary artery disease. J Thromb Thrombolysis 30:365–371

    Article  PubMed  CAS  Google Scholar 

  18. Devalliere J, Chatelais M, Fitau J et al (2012) LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets alpha-parvin to control cell adhesion and migration. FASEB J 26:2592–2606

    Article  PubMed  CAS  Google Scholar 

  19. Smyth DJ, Plagnol V, Walker NM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359:2767–2777

    Article  PubMed  CAS  Google Scholar 

  20. Newton-Cheh C, Johnson T, Gateva V et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676

    Article  PubMed  CAS  Google Scholar 

  21. Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature (1979). Circulation 59:607–609

    Google Scholar 

  22. Higgs ZC, Macafee DA, Braithwaite BD, Maxwell-Armstrong CA (2005) The Seldinger technique: 50 years on. Lancet 366:1407–1409

    Article  PubMed  CAS  Google Scholar 

  23. Di Pietro F, Ortenzi F, Tilio M et al (2011) Genomic DNA extraction from whole blood stored from 15 to 30 years at −20 °C by rapid phenol-chloroform protocol: a useful tool for genetic epidemiology studies. Mol Cell Probes 25:44–48

    Article  PubMed  Google Scholar 

  24. Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet; Chapter 2:Unit 2 12

  25. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  26. Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127:820–826

    Article  PubMed  CAS  Google Scholar 

  27. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  28. Seagroatt V, Stratton I (1998) Bias in meta-analysis detected by a simple, graphical test. Test had 10 % false positive rate. BMJ 316:470; author reply 470–471

    Google Scholar 

  29. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  30. Sham PC, Curtis D (1995) Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59:97–105

    Article  PubMed  CAS  Google Scholar 

  31. Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493

    Article  PubMed  CAS  Google Scholar 

  32. Samani NJ, Erdmann J, Hall AS et al (2007) Genome wide association analysis of coronary artery disease. N Engl J Med 357:443–453

    Article  PubMed  CAS  Google Scholar 

  33. Kathiresan S (2008) A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med 358:2299–2300

    Article  PubMed  CAS  Google Scholar 

  34. Erdmann J, Grosshennig A, Braund PS et al (2009) New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet 41:280–282

    Article  PubMed  CAS  Google Scholar 

  35. Soranzo N, Spector TD, Mangino M et al (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41:1182–1190

    Article  PubMed  CAS  Google Scholar 

  36. Kathiresan S, Voight BF, Purcell S et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341

    Article  PubMed  CAS  Google Scholar 

  37. Coronary Artery Disease (C4D) Genetics Consortium (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43:339–344

    Article  Google Scholar 

  38. Davies RW, Dandona S, Stewart AF et al (2010) Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies. Circ Cardiovasc Genet 3:468–474

    Article  PubMed  CAS  Google Scholar 

  39. Saade S, Cazier JB, Ghassibe-Sabbagh M et al (2011) Large scale association analysis identifies three susceptibility loci for coronary artery disease. PLoS One 6:e29427

    Article  PubMed  CAS  Google Scholar 

  40. Pare G, Ridker PM, Rose L et al (2011) Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci. PLoS Genet 7:e1001374

    Article  PubMed  CAS  Google Scholar 

  41. Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  PubMed  CAS  Google Scholar 

  42. Roivainen M, Viik-Kajander M, Palosuo T et al (2000) Infections, inflammation, and the risk of coronary heart disease. Circulation 101:252–257

    Article  PubMed  CAS  Google Scholar 

  43. Sakai T, Inoue S, Matsuyama TA et al (2009) Eosinophils may be involved in thrombus growth in acute coronary syndrome. Int Heart J 50:267–277

    Article  PubMed  Google Scholar 

  44. Sato Y, Fukunaga T, Hayashi T, Asada Y (2008) Hypereosinophilic syndrome associated with occlusive coronary thrombosis and right ventricular thrombus. Pathol Int 58:138–141

    Article  PubMed  Google Scholar 

  45. Nadimi AE, Ahmadi J, Mehrabian M (2008) Peripheral eosinophil count and allergy in patients with coronary artery disease. Acta Med Indones 40:74–77

    PubMed  Google Scholar 

  46. Tanaka M, Fukui M, Tomiyasu K et al (2012) Eosinophil count is positively correlated with coronary artery calcification. Hypertens Res 35:325–328

    Article  PubMed  Google Scholar 

  47. Niccoli G, Ferrante G, Cosentino N et al (2010) Eosinophil cationic protein: a new biomarker of coronary atherosclerosis. Atherosclerosis 211:606–611

    Article  PubMed  CAS  Google Scholar 

  48. Akhabir L, Sandford A (2010) Genetics of interleukin 1 receptor-like 1 in immune and inflammatory diseases. Curr Genomics 11:591–606

    Article  PubMed  CAS  Google Scholar 

  49. Sekkach Y, Mekouar F, Jira M et al (2011) Durable efficacity and remission after treatment with imatinib mesylate for FIP1L1-PDGFRA transcript negative associated eosinophilic cardiomyopathy. Ann Pharm Fr 69:277–281

    Article  PubMed  CAS  Google Scholar 

  50. Singh RK, Gupta S, Dastidar S, Ray A (2010) Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 85:336–349

    Article  PubMed  CAS  Google Scholar 

  51. Haley KJ, Lilly CM, Yang JH et al (2000) Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 102:2185–2189

    Article  PubMed  CAS  Google Scholar 

  52. Emanuele E, Falcone C, D’Angelo A et al (2006) Association of plasma eotaxin levels with the presence and extent of angiographic coronary artery disease. Atherosclerosis 186:140–145

    Article  PubMed  CAS  Google Scholar 

  53. Zee RY, Cook NR, Cheng S et al (2004) Threonine for alanine substitution in the eotaxin (CCL11) gene and the risk of incident myocardial infarction. Atherosclerosis 175:91–94

    Article  PubMed  CAS  Google Scholar 

  54. Assimes TL, Holm H, Kathiresan S et al (2010) Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case-control studies. J Am Coll Cardiol 56:1552–1563

    Article  PubMed  CAS  Google Scholar 

  55. Wang F, Yang C, Song Y et al (2012) Periostin gene polymorphisms, protein levels and risk of incident coronary artery disease. Mol Biol Rep 39:359–367

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the grants from: National Natural Science Foundation of China (31100919 and 30772155), Zhejiang Provincial Program for the Cultivation of High level Innovative Health Talents, Natural Science Foundation of Zhejiang Province (Y206608), K.C. Wong Magna Fund in Ningbo University, and Youth and Doctor Foundation of Ningbo (2005A610016). The authors gratefully acknowledge the support of K.C. Wong Education Foundation, Hong Kong.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqing Zhou or Shiwei Duan.

Additional information

JL and YH are co-first authors of this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, J., Huang, Y., Huang, R.S. et al. Meta-analyses of four eosinophil related gene variants in coronary heart disease. J Thromb Thrombolysis 36, 394–401 (2013). https://doi.org/10.1007/s11239-012-0862-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0862-z

Keywords

Navigation