Background

Coronary heart disease (CHD), a multifactorial heart disorder resulting from both environmental and genetic factors [1], is one of the leading causes of disability and death around the world [2]. Epidemiology studies have suggested that hypertension, hyperlipidemia, diabetes mellitus, obesity and smoking are major risk factors for CHD [3]. In recent years, more and more studies reveled that several loci and variants are strongly associated with CHD [4, 5]. It has been estimated that approximately 50% of the variability of the major risk factors for CHD is determined by genetics [6].

The KIF6 protein is one of several molecular components that mediate intracellular transport of organelles, protein complexes, and mRNAs. A common Trp719Arg (rs20455) SNP in exon 19 of the KIF6 gene has been identified as a potential risk factor for CHD [7, 8]. The KIF6 protein belongs to the kinesin superfamily, which is involved in the intracellular transport in a microtubule and ATP-dependent manner [9]. The rs20455 polymorphism replaces the nonpolar ‘Trp’ residue in codon 719 with a basic ‘Arg’ amino acid. This SNP lies near the putative cargo binding taildomain and may alter the cargo activity of KIF6 [10]. Carriers of the 719Arg allele exhibit a 50% increased risk of events compared with non-carriers [8, 11]. Up to now, multiple large prospective and case–control studies have reported the association between KIF6 rs20455 polymorphism and the risk of CHD. However, somestudies have not verified inconsistent results. Published studies have generally been restricted in terms of sample size and ethnic diversity, and individual studies may have in-sufficient power to achieve a comprehensive and reliable conclusion. In view of the discrepancies in the findings of previous published studies, we aimed to perform a meta-analysis of the published studies to clarify the association between KIF6 rs20455 polymorphism and CHD to get a better under-standing of this relationship.

Methods

Literature search

A comprehensive search for all related studies from both electric databases, such as, Medline (mainly PubMed), Embase, Web of science, China National Knowledge Infrastructure (CNKI) et al., and hand search from references of all eligible literatures. Single or combinations of the following keywords were used: “kinesin like protein 6” or “KIF6” or “rs20455” or “719Arg”, “single nucleotide polymorphism, SNP or variation, mutation”, “genetic association” and “coronary heart disease” or “CHD”. No language and sample size were set. When more than one studies of the same population were included in several publications, only the most recent or complete studies were included in this meta-analysis.

Selection criteria

Articles included should meet following criteria: an appropriate description of KIF6 rs20455 polymorphism in CHD cases and healthy controls; results expressed as odds ratio (OR); and studies with a 95% confidence interval (CI) for OR with sufficient data to calculate these numbers. While for the exclusion criteria provided as follows: studies without raw data; case-only studies, family-based studies, case reports, editorials, and review articles (including meta-analyses). In studies with overlapping cases/controls, the study with the higher quality score or the study with more information on the origin of the cases/controls was included in the meta-analysis.

Data extraction

Two researchers extracted important information independently and carefully from all eligible studies according to the criteria listed above. Any disagreement will be resolved by the two authors through discussion or the third author. The following data were extracted from each included study: first author’s surname, year of publication, country, ethnicity, genotyping method, source of control, total number of cases and controls, distributions of KIF6 rs20455 genotypes. Different ethnicity descents were categorized as Caucasian, Asian, and Mixed populations (the original studies didn’t clarify the race of the subjects or mixed races).

Statistical analysis

We adopted poled ORs and corresponding 95% confidence interval (CIs) to detect the association between KIF6 rs20455 polymorphism and CHD risk. Heterogeneity was explored by Q statistic [12], and the P value was <0.05 will be considered statistically significant. Heterogeneity was also assessed using the I2 statistic, which takes values between 0% and 100% with higher values denoting greater degree of heterogeneity (I2 = 0–25%: noheterogeneity; I2 = 25–50%: moderate heterogeneity; I2 = 50–75%: large heterogeneity; I2 = 75–100%: extreme heterogeneity) [13]. Different statistical models will be selected according to the result of heterogeneity. Random (Der Simonian-Laird method) [14] will be used to calculate the precise results when the P value of heterogeneity was <0.05, or the I2 > 50%. Otherwise, fixed effects model (Mantel-Haenszel method) will be adopted [15]. Five genetic comparison model were carried out and calculated as follows: homozygote model (GG vs. AA), heterozygote model (AG vs. AA), recessive model (GG vs. AG + AA), and dominant model (GG + AG vs. AA), and allele comparison model (G-allele vs. A-allele). Hardy–Weinberg equilibrium in the control group was tested by the chi-square test for goodness of fit, and a P value of <0.05 was considered significant. Subgroup analyses were performed by ethnicity, source of control, to confirm if our results were stable and robust [16]. Begg’s funnel plots [17] and Egger’s test [18] were explored to examine if potential publication bias were existed in this study. Sensitivity analysis was carried out by sequentially omitting each study and finding the influence on the overall summary estimate [19]. All the statistical analyses were finished by STATA software (version 12.0; Stata Corporation, College Station, TX). All the P values were two-sided.

Results

Characteristics of all included studies

Totally, 209 potential relevant studies were searched through several databases. Based on the including criteria listed above, only 28 articles including 50 separate studies were included finally [8, 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46]. A flow diagram summarizing the process of study selection was present in Fig. 1. The baseline characteristics ofall included studies were listed in Table 1. Helgadottir et al. contained two individual studies [25], Samani et al. contained two individual studies [26], Assimes et al. contained 20 individual studies [31], and Wu et al. contained two separate studies [41]. Moreover, there were 37 studies from Caucasian decedent, 9 studies from Asian populations and the rest 14 studies from mixed populations. There were 20 population-based (PB) studies, 21 hospital-based (HB) studies and four family based (FB) study, three community based (CB) study, two hospital and community based (H-CB) study. Different ethnicity descents were categorized as Caucasian, Asian and Mix (the original studies didn’t clarify the race of the subjects or mixed races).

Fig. 1
figure 1

The process of literature research

Table 1 Characteristics of all studies included in this meta-analysis

Quantitative synthesis

All the eligible data were calculated and significant heterogeneity was detected under homozygote (I2 = 33.9%; Pheterogeneity = 0.012), heterozygote (I2 = 35.5%; Pheterogeneity = 0.008), dominant (I2 = 39.8; Pheterogeneity = 0.002), recessive (I2 = 26.5%; Pheterogeneity = 0.047) and allele comparison model (I2 = 44.2%; Pheterogeneity = 0.001) between this gene variation and the risk of CHD. So, random-effect model was used to calculate the statistical parameters. Overall, there were no significant association existed between KIF6 rs20455 polymorphism and the risk of CHD (Homozygote model: OR = 1.007, 95% CI =0.952–1.066, P = 0.801, Fig. 2; Heterozygote model: OR = 1.009, 95% CI = 0.968–1.052, P = 0.636, Fig. 3; Dominant model: OR = 1.007, 95% CI = 0.966–1.048, P = 0.753, Fig. 4; Recessive model: OR = 0.989, 95% CI = 0.943–1.037, P = 0.655, Fig. 5; Allele comparison model: OR = 1.00, 95% CI = 0.971–1.030, P = 0.988, Fig. 6). Furthermore, we explored the subgroup analyses by ethnicity and source of control. All the results were listed in Table 2.

Fig. 2
figure 2

Forest plot of the association between KIF6 rs20455 gene polymorphism and CHD risk (under homozygote model)

Fig. 3
figure 3

Forest plot of the association between KIF6 rs20455 gene polymorphism and CHD risk (under heterozygote model)

Fig. 4
figure 4

Forest plot of the association between KIF6 rs20455 gene polymorphism and CHD risk (under dominant model)

Fig. 5
figure 5

Forest plot of the association between KIF6 rs20455 gene polymorphism and CHD risk (under recessive model)

Fig. 6
figure 6

Forest plot of the association between KIF6 rs20455 gene polymorphism and CHD risk (under allele comparison model)

Table 2 Main results of pooled ORs with 95% CI in the meta-analysis

Sensitivity analysis

The sensitivity analysis was performed to evaluate the influence of each individual study on the pooled OR by omitting every single study. The analysis results reflected that our results were statistically stable and reliable.

Publication bias

There was no significant publication bias found in the meta-analysis, reflected by P values from Begg’s correlation (Heterozygote model: P = 0.089; Dominant model: P = 0.061; Allele comparison model: P = 0.052, Fig. 7) and Egger’s regression (Heterozygote model: P = 0.070; Dominant model: P = 0.058; Allele comparison model: P = 0.066, Fig. 8). However, significant publication bias found in the meta-analysis, reflected by P values from Begg’s correlation (Homozygote model: P = 0.046; Recessive model: P = 0.025) and Egger’s regression (Homozygote model: P = 0.041; Recessive model: P = 0.040). All the results are listed in Table 2.

Fig. 7
figure 7

Begg’s test of the association between KIF6 rs20455 gene polymorphism and CHD risk (under allele comparison model)

Fig. 8
figure 8

Egger’s test the association between KIF6 rs20455 gene polymorphism and CHD risk (under allele comparison model)

Discussion

Large sample and unbiased epidemiological studies of predisposition genes polymorphisms could provide insight into the in vivo relationship between candidate genes and complex diseases. Many epidemiological studies have investigated the relationship between the KIF6 rs20455 polymorphism and the risk of CHD, but because of small sample size and the low statistical power of individual studies, results have been contradictory. In this present study, we searched all eligible studies to date and got the precise result if KIF6 rs20455 polymorphism could contribute to the risk of CHD. To the best of our knowledge, our present work was the most comprehensive one through enrolling all eligible studies.

Herein, we included 50 individual studies, including 40,059 cases and 64,032 controls. Overall, there was no association between KIF6 rs20455 polymorphism and CHD risk. Hamidizadeh et al. found that significant association was found between this gene polymorphism and CHD risk among Caucasian populations [43], and the result was verified in another study through enrolling 143,000 subjects [40]. However, no association was found in a meta-analysis, among South Asians, African-Americans, Hispanics, East Asians, and mixed decedent populations [39]. Furthermore, other recent studies were also found no association existed between this gene polymorphism and CHD risk [25, 26, 47,48,49]. When we got the subgroup analyses by ethnicity, there was also no association found among Caucasian and Asian populations. While decreased risk of this gene polymorphism and CHD risk was found among mixed populations. Of note, mixed populations means the original studies didn’t clarify the race of the subjects or mixed races. This result may be not provided some useful information for clinical deeds. So, further studies should be performed with clearly race or ethnicity stated in their work.

Publication bias was found in some genetic models. The explanations might arise from some aspects. First, our meta-analysis took into consideration only fully published data, and the abstract and conference papers were excluded. Second, this meta-analysis only focused on papers published in Chinese and English language, and some eligible studies which were reported in other languages might be missed. Third, positive results tend to be accepted by journals while negative results are often rejected or not even submitted. We should point out that the publication bias might partly account for the results, but which were not affected deeply. When we adjusted the results using the trim and fill method, the adjusted risk estimate was attenuated but remained significant, indicating the stability of our results.

Some limitations of this meta-analysis should be addressed. Firstly, heterogeneity is a potential problem when interpreting all the results of meta-analysis. Although we minimized the likelihood by performing a careful search for published studies, using the explicit criteria for study inclusion, the significant between-study heterogeneity still existed in most of comparison. The presence of heterogeneity can result from differences in the age distribution, selection of controls, prevalence lifestyle factors and so on. Secondly, only published studies were included in this meta-analysis. Therefore, potential publication bias was existed in some genetic models. Despite the limitations, our meta-analysis significantly increased the statistical power based on substantial data from different studies. The sensitivity analyses outcomes reflected that our results were statistically stable and reliable.

In conclusion, this present meta-analysis suggests that carriers of KIF6 rs20455 polymorphism may irrelative to the risk of CHD. We also observed no compelling evidence of an association between the KIF6 rs20455 SNP and CHD in multiple race/ethnic groups. These findings do not support the clinical utility of testing for the KIF6 rs20455 polymorphism in the primary prevention of CHD and indirectly question whether genotype information at this locus is able to identify subjects most likely to benefit from the use of statins.