Skip to main content
Log in

Photoelectric Properties of a Nanocomposite Derived from Reduced Graphene Oxide and TiO2

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The properties of a nanocomposite derived from reduced graphene oxide and TiO2 obtained by hydrothermal synthesis were investigated. Nanocomposite formation was confirmed by SEM as well as Raman and IR spectroscopy. The introduction of 10% rGO into the nanocomposite leads to considerably lower resistance than found for TiO2 itself. The combination of enhanced electrotransport, optical, and adsorption parameters of these nanocomposites leads to better photoelectrochemical characteristics than for pure titanium dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. B. Murphy, Sol. Energy Mater. Sol. Cells, 91, No. 14, 1326-1337 (2007), doi: https://doi.org/10.1016/j.solmat.2007.05.005.

    Article  CAS  Google Scholar 

  2. K. Woan, G. Pyrgiotakis, and W. Sigmund, Adv. Mater., 21, No. 21, 2233-2239, doi: https://doi.org/10.1002/adma.200802738.

  3. I. P. Stepanenko, Fundamentals of the Theory of Transistors and Transistor Systems [in Russian], Énergiya, Moscow (1977).

    Google Scholar 

  4. Sh.-D. Mo and W. Y. Ching, Phys. Rev. B, 51, No. 19, 13023-13032 (1995), doi: https://doi.org/10.1103/PhysRevB.51.13023.

    Article  CAS  Google Scholar 

  5. S. Angkaewa and P. Limsuwana, Procedia Eng., 32, No. 1, 649-655 (2012), doi: https://doi.org/10.1016/j.proeng.2012.01.1322.

    Article  CAS  Google Scholar 

  6. P. Calandra, A. Riggirello, A. Pistone, and V. T. Liveri, J. Clust. Sci., 4, No. 3, 767-778 (2010), doi: https://doi.org/10.1007/s10876-010-0330-x.

    Article  CAS  Google Scholar 

  7. V. N. Kuznetsov and N. Serpone, J. Phys. Chem. C, 111, No. 42, 15277-15288 (2007), doi: https://doi.org/10.1021/jp073511h.

    Article  CAS  Google Scholar 

  8. H. Zhang, G. Wang, D. Chen, et al., Chem. Mater., 20, No. 20, 6543-6549 (2008), doi: https://doi.org/10.1021/cm801796q.

    Article  CAS  Google Scholar 

  9. S. M. Gupta and M. Tripathi, J. Phys. Chem., 56, No. 16, 1639-1657 (2011), doi: https://doi.org/10.1007/s11434-011-4476-1.

    Article  CAS  Google Scholar 

  10. P. V. Kamat, J. Phys. Chem. Lett., 2, No. 3, 242-251 (2011), doi: 10/1021/jz101639v.

  11. X. Wang, L. Zhi, and K. Muellen, Nano Lett., 8, No. 1, 323-327 (2008), doi: https://doi.org/10.1021/nl072838r.

    Article  CAS  PubMed  Google Scholar 

  12. L. Y. Ozer, C. Garlisi, H. Oladipo, et al., J. Photochem. Photobiol. C, 33, No. 12, 132-164 (2017), doi: https://doi.org/10.1016/j.photochemrev.2017.06.003.

    Article  CAS  Google Scholar 

  13. C. Chen, W. Cai, M. Long, et al., ACS Nano, 4, No. 11, 6425-6432 (2010), doi:https://doi.org/10.1021/nn102130m.

    Article  CAS  PubMed  Google Scholar 

  14. Y. H. Ng, I. V. Lightcap, K. Goodwin, et al., J. Phys. Chem. Lett., 15, No. 1, 2222-2227 (2010), doi: https://doi.org/10.1021/jz100828z.

    Article  Google Scholar 

  15. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, No. 7, 1487-1491 (2008), doi: https://doi.org/10.1021/nn800251f.

    Article  CAS  PubMed  Google Scholar 

  16. W. Fan, Q. Lai, Q. Zhang, and Ye, Wang, J. Phys. Chem. C, 115, No. 21, 10694-10701 (2011), doi: https://doi.org/10.1021/jp2008804.

    Article  CAS  Google Scholar 

  17. Z.-Y. Zhang, H.-P. Li, X.-L. Cui, and Y. Lin, J. Mater. Chem., 20, No. 14, 2801-2806 (2010), doi: https://doi.org/10.1039/b917240h.

    Article  CAS  Google Scholar 

  18. B. Pant, P. S. Saud, M. Mark, et al., J. Alloys Compd., 671, No. 25, 51-59 (2016), doi: https://doi.org/10.1016/j.jallcom.2016.02.067.

    Article  CAS  Google Scholar 

  19. K. Lv, Sh. Fang, L. Si, et al., Appl. Surf. Sci., 391, No. 1, 218-227 (2017), doi: https://doi.org/10.1016/j.apsusc.2016.03.195.

    Article  CAS  Google Scholar 

  20. E. Vasilaki, I. Georgaki, D. Vernardou, et al., J. Appl. Surf. Sci., 353, No. 30, 865-872 (2015), doi: https://doi.org/10.1016/j.apsusc.2015.07.056.

    Article  CAS  Google Scholar 

  21. H. Zhang, X. Lv, Y. Li, et al., ACS Nano, 4, No. 1, 380-386 (2010), doi: https://doi.org/10.1021/nn901221k.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Swamy, A. Kuznetsov, L. S. Dubrovinsky, et al., Phys. Rev. B, 71, No. 18, 184302 (2005), doi: https://doi.org/10.1103/PhysRevB.71.184302.

    Article  CAS  Google Scholar 

  23. A. Jario, M. Dresselhaus, R. Saito, and G. F. Dresselhaus, Raman Spectroscopy in Graphene Related Systems, Wiley-VCH Verlag, Weinheim (2011).

    Book  Google Scholar 

  24. N. J. Bell, Y. H. Ng, A. Du, et al., J. Phys. Chem. C, 115, No. 13, 6004-6009 (2011), doi: https://doi.org/10.1021/jp1113575.

    Article  CAS  Google Scholar 

  25. L. Zhang, J. Zhang, H. Jiu, et al., J. Phys. Chem. Solids, 86, No. 6, 82-89 (2015), doi: https://doi.org/10.1016/j.jpcs.2015.06.018.

    Article  CAS  Google Scholar 

  26. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and P. R. Bueno, J. Electroanal. Chem., 475, No. 2, 152-163 (1999), doi: https://doi.org/10.1016/S0022-0728(99)00346-0.

    Article  CAS  Google Scholar 

  27. R. Kern, R. Sastrawan, J. Ferber, et al., J. Electrochim. Acta, 47, No. 26, 4213-4225 (2002), doi: https://doi.org/10.1016/S0013-4686(02)00444-9.

    Article  CAS  Google Scholar 

  28. J. Bisquert, J. Phys. Chem. B, 106, No. 2, 325-333 (2002).

    Article  CAS  Google Scholar 

  29. B. Zhang, D. Wang, Y. Hou, et al., Sci. Rep., 3, No. 1, 1836-1843 (2013), doi: https://doi.org/10.1038/srep01836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Adachi, M. Sakamoto, J. Jinting, et al., J. Phys. Chem. B, 110, No. 28, 13872-13880 (2006), doi: https://doi.org/10.1021/jp061693u.

    Article  CAS  PubMed  Google Scholar 

Download references

This work was carried out in the framework of Grants AP05132443 and BR05236691 financed by the Ministry of Education and Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zh. Zhumabekov.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 6, pp. 365-372, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhumabekov, A.Z., Ibrayev, N.K. & Seliverstova, E.V. Photoelectric Properties of a Nanocomposite Derived from Reduced Graphene Oxide and TiO2. Theor Exp Chem 55, 398–406 (2020). https://doi.org/10.1007/s11237-020-09632-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09632-8

Key words

Navigation