Skip to main content
Log in

Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

An extension of the two-dimensional (2d) Alday-Gaiotto-Tachikawa (AGT) relation to three dimensions starts from relating the theory on the domain wall between some two S-dual supersymmetric Yang-Mills (SYM) models to the 3d Chern-Simons (CS) theory. The simplest case of such a relation would presumably connect traces of the modular kernels in 2d conformal theory with knot invariants. Indeed, the two quantities are very similar, especially if represented as integrals of quantum dilogarithms. But there are also various differences, especially in the “conservation laws” for the integration variables holding for the monodromy traces but not for the knot invariants. We also consider another possibility: interpreting knot invariants as solutions of the Baxter equations for the relativistic Toda system. This implies another AGT-like relation: between the 3d CS theory and the Nekrasov-Shatashvili limit of the 5d SYM theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Terashima and M. Yamazaki, JHEP, 1108, 135 (2011); arXiv:1103.5748v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  2. D. Gaiotto, “N=2 dualities,” arXiv:0904.2715v1 [hep-th] (2009).

  3. D. Gaiotto, G. Moore, and A. Neitzke, “Wall-crossing, Hitchin systems, and the WKB approximation,” arXiv:0907.3987v2 [hep-th] (2009); T. Dimofte, S. Gukov, and Y. Soibelman, Lett. Math. Phys., 95, 1–25 (2011); arXiv:0912.13461 [hep-th] (2009); M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas invariants, and cluster transformations,” arXiv:0811.2435v1 [math.AG] (2008); V. Fock and A. Goncharov, Publ. Math. Inst. Hautes Études Sci., 103, 1–211 (2006); arXiv:math/0311149v4 (2003).

  4. V. Pestun, “Localization of the four-dimensional N=4 SYM to a two-sphere and 1/8 BPS Wilson loops,” arXiv:0906.0638v2 [hep-th] (2009).

  5. N. Nekrasov and E. Witten, JHEP, 1009, 092 (2010); arXiv:1002.0888v2 [hep-th] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Awata and H. Kanno, J. Phys. A, 44, 375201 (2011); arXiv:0910.0083v3 [math.QA] (2009).

    Article  MathSciNet  Google Scholar 

  7. E. Gorsky, “q, t-Catalan numbers and knot homology,” arXiv:1003.0916v3 [math.AG] (2010).

  8. T. Dimofte, S. Gukov, and L. Hollands, “Vortex counting and Lagrangian 3-manifolds,” arXiv:1006.0977v1 [hep-th] (2010).

  9. R. Dijkgraaf, H. Fuji, and M. Manabe, Nucl. Phys. B, 849, 166–211 (2011); arXiv:1010.4542v1 [hep-th] (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. K. Hosomichi, S. Lee, and J. Park, JHEP, 1012, 079 (2010); arXiv:1009.0340v2 [hep-th] (2010); 1103, 127 (2011); arXiv:1012.3512v3 [hep-th] (2010); “SUSY gauge theories on squashed three-spheres,” arXiv:1102.4716v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  11. E. Witten, “Analytic continuation of Chern-Simons theory,” arXiv:1001.2933v4 [hep-th] (2010); “Fivebranes and knots,” arXiv:1101.3216v2 [hep-th] (2011).

  12. F. A. H. Dolan, V. P. Spiridonov, and G. S. Vartanov, Phys. Lett. B, 704, 234–241 (2011); arXiv:1104.1787v2 [hep-th] (2011).

    Article  MathSciNet  ADS  Google Scholar 

  13. L. Alday, D. Gaiotto, and Y. Tachikawa, Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep-th] (2009); N. Wyllard, JHEP, 0911, 002 (2009); arXiv:0907.2189v2 [hep-th] (2009); A. Mironov and A. Morozov, Phys. Lett. B, 680, 188–194 (2009); arXiv:0908.2190v1 [hep-th] (2009); Nucl. Phys. B, 825, 1–37 (2009); arXiv:0908.2569v2 [hep-th] (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. K. Hikami, Internat. J. Mod. Phys. A, 16, 3309–3333 (2001); arXiv:math-ph/0105039v1 (2001); Internat. J. Mod. Phys. B, 16, 1963–1970 (2002); J. Geom. Phys., 57, 1895–1940 (2007); arXiv:math/0604094v1 (2006); T. Dimofte, S. Gukov, J. Lenells, and D. Zagier, Commun. Num. Theor. Phys., 3, 363–443 (2009); arXiv:0903.2472v1 [hep-th] (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R. Poghossian, JHEP, 0912, 038 (2009); arXiv:0909.3412v2 [hep-th] (2009); V. Alba and A. A. Morozov, JETP Letters, 90, 708–712 (2009); arXiv:0911.0363v2 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Teschner, Internat. J. Mod. Phys. A, 19(Suppl. 2), 436–458 (2004); arXiv:hep-th/0303150v2 (2003); “From Liouville theory to the quantum geometry of Riemann surfaces,” in: Prospects in Mathematical Physics (Contemp. Math., Vol. 437, J. C. Mouräo and J. P. Nunes, eds.), Amer. Math. Soc., Providence, R. I. (2007), pp. 231–246; arXiv:hep-th/0308031v3 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. E. W. Barnes, Proc. London Math. Soc., 31, 358–381 (1899); Phil. Trans. Roy. Soc. A, 196, 265–387 (1901); Trans. Cambr. Phil. Soc., 19, 374–425 (1904).

    Article  MATH  Google Scholar 

  18. T. Shintani, J. Fac. Sci. Univ. Tokyo IA, 24, 167–199 (1977); N. Kurokawa, Proc. Japan Acad. A, 67, 61–64 (1991); 68, 256–260 (1992); N. Kurokawa et al., “Multiple zeta functions: An example,” in: Zeta Functions in Geometry (Adv. Stud. Pure Math., Vol. 21), Kinokuniya Company, Tokyo (1992), p. 219–226; L. D. Faddeev and R. M. Kashaev, Modern Phys. Lett. A, 9, 427–434 (1994); arXiv:hep-th/9310070v1 (1993); L. Faddeev, Lett. Math. Phys., 34, 249–254 (1995); arXiv:hep-th/9504111v1 (1995); “Modular double of a quantum group,” in: Conférence Moshé Flato “Quantization, Deformations, and Symmetries” (Math. Phys. Stud., Vol. 21, G. Dito and D. Sternheimer, eds.), Vol. 1, Kluwer, Dordrecht (2000), pp. 149–156; arXiv:math.qa/9912078v1 (1999); S. Sergeev, V. Bazhanov, H. Boos, V. Mangazeev, and Yu. Stroganov, “Quantum dilogarithm and tetrahedron equation,” Preprint No. IHEP-95-129, Inst. High Energy Phys., Protvino (1995); M. Jimbo and T. Miwa, J. Phys. A, 29, 2923–2958 (1996); arXiv:hep-th/9601135v1 (1996); S. N. M. Ruijsenaars, J. Math. Phys., 38, 1069–1146 (1997); R. M. Kashaev, Lett. Math. Phys., 43, 105–115 (1998).

    MathSciNet  MATH  Google Scholar 

  19. E. Witten, Commun. Math. Phys., 121, 351–399 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J. Wess and B. Zumino, Phys. Lett. B, 37, 95–07 (1971); S. P. Novikov, Russ. Math. Surveys, 37, 1–56 (1982); E. Witten, Commun. Math. Phys., 92, 455–472 (1984); A. Gerasimov, A. Marshakov, A. Morozov, M. Olshanetsky, and S. Shatashvili, Internat. J. Mod. Phys. A, 5, 2495–2589 (1990).

    MathSciNet  ADS  Google Scholar 

  21. A. Yu. Morozov, Sov. Phys. Usp., 35, 671–714 (1992); 164, 3–62 (1994); arXiv:hep-th/9303139v2 (1993); “Matrix models as integrable systems,” arXiv:hep-th/9502091v1 (1995); “Challenges of matrix models,” arXiv:hepth/0502010v2 (2005); A. Mironov, Internat. J. Mod. Phys. A, 9, 4355–4405 (1994); arXiv:hep-th/9312212v1 (1993); A. D. Mironov, Phys. Part. Nucl., 33, 537–582 (2002); A. Mironov, “Quantum deformations of τ — functions, bilinear identities, and representation theory,” arXiv:hep-th/9409190v2 (1994); A. D. Mironov, Theor. Math. Phys., 114, 127–183 (1998); “τ-Function within group theory approach and its quantization,” arXiv:q-alg/9711006v2 (1997).

    Article  ADS  Google Scholar 

  22. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, and C. Vafa, Commun. Math. Phys., 261, 451–516 (2006); arXiv:hep-th/0312085v1 (2003); M. Mariño, Rev. Modern Phys., 77, 675–720 (2005); arXiv:hep-th/0406005v4 (2004); V. Bouchard, B. Florea, and M. Mariño, “Counting higher genus curves with crosscaps in Calabi-Yau orientifolds,” arXiv:hep-th/0405083v3 (2004).

    Article  ADS  MATH  Google Scholar 

  23. S. Garoufalidis and T. T. Q Lê, Geom. Topol., 9, 1253–1293 (2005); arXiv:math/0309214v3 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Alexandrov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 19, 4127–4163 (2004); arXiv:hepth/0310113v1 (2003); Phys. D, 235, 126–167 (2007); arXiv:hep-th/0608228v1 (2006); JHEP, 0912, 053 (2009); arXiv:0906.3305v2 [hep-th] (2009); A. S. Alexandrov, A. D. Mironov, and A. Yu. Morozov, Theor. Math. Phys., 150, 153–164 (2007); A. Alexandrov, A. Mironov, A. Morozov, and P. Putrov, Internat. J. Mod. Phys. A, 24, 4939–4998 (2009); arXiv:0811.2825v2 [hep-th] (2008); B. Eynard, JHEP, 0411, 031 (2004); arXiv:hepth/0407261v1 (2004); L. Chekhov and B. Eynard, JHEP, 0603, 014 (2006); arXiv:hep-th/0504116v1 (2005); 0612, 026 (2006); arXiv:math-ph/0604014v1 (2006); N. Orantin, “Symplectic invariants, Virasoro constraints, and Givental decomposition,” arXiv:0808.0635v2 [math-ph] (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. N. M. Dunfield, S. Gukov, and J. Rasmussen, Exp. Math., 15, 129–159 (2006); arXiv:math/0505662v2 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Gukov, A. Iqbal, C. Kozcaz, and C. Vafa, “Link homologies and the refined topological vertex,” arXiv:0705.1368v1 [hep-th] (2007).

  27. M. Khovanov, Duke Math. J., 101, 359–426 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Guadagnini, M. Martellini, and M. Mintchev, “Chern-Simons field theory and quantum groups,” in: Proceedings of the Workshop on Quantum Groups (Lect. Notes Phys., Vol. 370), Springer, Berlin (1990), pp. 307–317; Phys. Lett. B, 235, 275–281 (1990).

    Chapter  Google Scholar 

  29. A. Morozov and A. Smirnov, Nucl. Phys. B, 835, 284–313 (2010); arXiv:1001.2003v2 [hep-th] (2010); A. Smirnov, “Notes on Chern-Simons theory in the temporal gauge,” arXiv:0910.5011v1 [hep-th] (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. V. Drinfel’d, “Quasi Hopf algebras and Knizhnik-Zamolodchikov equations,” in: Problems of Modern Quantum Field Theory (A. A. Belavin, A. U. Klimyk, and A. B. Zamolodchikov, eds.), Springer, Berlin (1989), p. 1–13.

    Chapter  Google Scholar 

  31. T. T. Q. Le and J. Murakami, Nagoya Math. J., 142, 39–65 (1996).

    MathSciNet  MATH  Google Scholar 

  32. S. Chmutov and S. Duzhin, Acta Appl. Math., 66, 155–190 (2001); arXiv:math/0501040v3 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B, 247, 83–103 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. P. Dunin-Barkovsky, A. Sleptsov, and A. Smirnov, “Kontsevich integral for knots and Vassiliev invariants,” arXiv:1112.5406v3 [hep-th] (2011); “Explicit computation of Drinfeld associator in the case of the fundamental representation,” arXiv:1201.0025v2 [hep-th] (2012).

  35. S. Chmutov, S. Duzhin, and J. Mostovoy, “Introduction to Vassiliev knot invariants,” arXiv:1103.5628v3 [math.GT] (2011); J. M. F. Labastida and E. Perez, J. Math. Phys., 41, 2658–2699 (2000); arXiv:hepth/9807155v2 (1998); J. Math. Phys., 39, 5183–5198 (1998); arXiv:hep-th/9710176v1 (1997); M. Alvarez, J. M. F. Labastida, and E. Pérez, Nucl. Phys. B, 488, 677–718 (1997); arXiv:hep-th/9607030v1 (1996); M. Alvarez and J. M. F. Labastida, Commun. Math. Phys., 189, 641–654 (1997); arXiv:q-alg/9604010v1 (1996); Nucl. Phys. B, 433, 555–596 (1995); arXiv:hep-th/9407076v1 (1994).

    Google Scholar 

  36. D. Bar-Natan and E. Witten, Commun. Math. Phys., 141, 423–440 (1991); D. Bar-Natan, “Perturbative aspects of the Chern-Simons topological quantum field theory,” Doctoral dissertation, Princeton Univ. Press, Princeton, N. J. (1991); J. Knot Theor. Ramifications, 4, 503–547 (1995); “Wheels, wheeling, and the Kontsevich integral of the unknot,” arXiv:q-alg/9703025v3 (1997); R. Kashaev and N. Reshetikhin, “Invariants of tangles with flat connections in their complements: I. Invariants and holonomy R-matrices,” arXiv:math/0202211v1 (2002); “Invariants of tangles with flat connections in their complements: II. Holonomy R-matrices related to quantized universal enveloping algebras at roots of 1,” arXiv:math/0202212v1 (2002); V. G. Turaev and O. Y. Viro, Topology, 31, 865–902 (1992); V. G. Turaev, Russ. Math. Surveys, 41, 119–182 (1986); S. Axelrod and I. Singer, “Chern-Simons Perturbation Theory,” in: Proc. 20th Interl. Conf. on Differential Geometric Methods in Theoretical Physics (New York, USA, June 3–7, 1991, S. Catto and A. Rocha, eds.), World Scientific, River Edge, N. J. (1992), pp. 3–45; arXiv:hep-th/9110056v1 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. M. Goussarov, M. Polyak, and O. Viro, Topology, 39, 1045–1068 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. D. Mironov, A. Yu. Morozov, and S. M. Natanzon, Theor. Math. Phys., 166, 1–22 (2011); arXiv:0904.4227v2 [hep-th] (2009); J. Geom. Phys., 62, 148–155 (2012); arXiv:1012.0433v1 [math.GT] (2010).

    Article  Google Scholar 

  39. R. M. Kashaev, “The hyperbolic volume of knots from quantum dilogarithm,” arXiv:q-alg/9601025v2 (1996).

  40. M. Mariño, JHEP, 0812, 114 (2008); arXiv:0805.3033v2 [hep-th] (2008).

    Article  ADS  Google Scholar 

  41. A. Morozov and Sh. Shakirov, JHEP, 0912, 003 (2009); arXiv:0906.0036v1 [hep-th] (2009); “From Brezin-Hikami to Harer-Zagier formulas for Gaussian correlators,” arXiv:1007.4100v1 [hep-th] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  42. W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ. Press, Princeton, N. J. (1980).

    Google Scholar 

  43. R. Gelca, Math. Proc. Cambridge Philos. Soc., 133, 311–323 (2002); R. Gelca and J. Sain, J. Knot Theory Ramifications, 12, 187–201 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. S. Garoufalidis and C. Koutschan, Adv. Appl. Math., 47, 829–839 (2011); arXiv:1011.6329v3 [math.GT] (2010).

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Garoufalidis, H. Morton, and T. Vuong, “The sl3 colored Jones polynomial of the trefoil,” arXiv:1010.3147v4 [math.GT] (2010).

  46. N. Nekrasov, Nucl. Phys. B, 531, 323–344 (1998); arXiv:hep-th/9609219v3 (1996); A. Gorsky, S. Gukov, and A. Mironov, Nucl. Phys. B, 518, 689–713 (1998); arXiv:hep-th/9710239v4 (1997); A. Marshakov and A. Mironov, Nucl. Phys. B, 518, 59–91 (1998); arXiv:hep-th/9711156v1 (1997); H. W. Braden, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 448, 195–202 (1999); arXiv:hep-th/9812078v1 (1998); Nucl. Phys. B, 558, 371–390 (1999); arXiv:hep-th/9902205v1 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. A. Mironov and A. Morozov, JHEP, 1004, 040 (2010); arXiv:0910.5670v2 [hep-th] (2009); J. Phys. A, 43, 195401 (2010); arXiv:0911.2396v1 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  48. A. Popolitov, “On relation between Nekrasov functions and BS periods in pure SU(N) case,” arXiv:1001.1407v1 [hep-th] (2010); W. He and Y.-G. Miao, Phys. Rev. D, 82, 025020 (2010); arXiv:1006.1214v3 [hep-th] (2010); K. Maruyoshi and M. Taki, Nucl. Phys. B, 841, 388–425 (2010); arXiv:1006.4505v3 [hep-th] (2010); A. Marshakov, A. Mironov, and A. Morozov, J. Geom. Phys., 61, 1203–1222 (2011); arXiv:1011.4491v1 [hep-th] (2010); F. Fucito, J. F. Morales, R. Poghossian, and D. R. Pacifici, JHEP, 1105, 098 (2011); arXiv:1103.4495v4 [hepth] (2011); Y. Zenkevich, Phys. Lett. B, 701, 630–639 (2011); arXiv:1103.4843v2 [math-ph] (2011); N. Dorey, T. J. Hollowood, and S. Lee, “Quantization of integrable systems and a 2d/4d duality,” arXiv:1103.5726v3 [hep-th] (2011).

  49. N. A. Nekrasov and S. L. Shatashvili, “Quantization of integrable systems and four dimensional gauge theories,” arXiv:0908.4052v1 [hep-th] (2009).

  50. A. Losev, N. Nekrasov, and S. Shatashvili, Nucl. Phys. B, 534, 549–611 (1998); arXiv:hep-th/9711108v2 (1997); G. Moore, N. Nekrasov, and S. Shatashvili, Commun. Math. Phys, 209, 97–121 (2000); arXiv:hep-th/9712241v2 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. A. Mironov, A. Morozov, Sh. Shakirov, and A. Smirnov, Nucl. Phys. B, 855, 128–151 (2012); arXiv:1105.0948v1 [hep-th] (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. S. Kharchev, D. Lebedev, and M. Semenov-Tian-Shansky, Commun. Math. Phys., 225, 573–609 (2002); arXiv:hep-th/0102180v2 (2001); S. Kharchev and D. Lebedev, J. Phys. A, 34, 2247–2258 (2001); arXiv:hepth/0007040v1 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. N. Seiberg and E. Witten, Nucl. Phys. B, 426, 19–52 (1994); arXiv:hep-th/9408099v1 (1994); 431, 484–550 (1994); arXiv:hep-th/9407087v1 (1994); A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466–477 (1995); arXiv:hep-th/9505035v2 (1995); R. Donagi and E. Witten, Nucl. Phys. B, 460, 299–334 (1996); arXiv:hep-th/9510101v2 (1995).

  54. H. Ooguri and C. Vafa, Nucl. Phys. B, 577, 419–438 (2000); arXiv:hep-th/9912123v3 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. T. Dimofte, “Quantum Riemann surfaces in Chern-Simons theory,” arXiv:1102.4847v3 [hep-th] (2011).

  56. R. Dijkgraaf and H. Fuji, Fortsch. Phys., 57, 825–856 (2009); arXiv:0903.2084v2 [hep-th] (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. R. M. Kashaev and O. Tirkkonen, “Proof of the volume conjecture for torus knots,” arXiv:math/9912210v1 (1999).

  58. H. Murakami, Internat. J. Math., 15, 547–555 (2004); arXiv:math/0405126v1 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Galakhov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 172, No. 1, pp. 72–99, July, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galakhov, D.V., Mironov, A.D., Morozov, A.Y. et al. Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation. Theor Math Phys 172, 939–962 (2012). https://doi.org/10.1007/s11232-012-0088-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0088-4

Keywords

Navigation