Skip to main content
Log in

Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We find that constructing the two mutually-conjugate tripartite entangled state representations naturally leads to the entangled Fourier transformation. We then derive the convolution theorem for the threedimensional entangled fractional Fourier transformation in the context of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777–780 (1935).

    Article  MATH  ADS  Google Scholar 

  2. H.-Y. Fan and J. R. Klauder, Phys. Rev. A, 49, 704–707 (1994).

    Article  ADS  Google Scholar 

  3. H.-Y. Fan and L. Fu, Internat. J. Theoret. Phys., 44, 529–538 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. H.-Y. Fan and N.-Q. Jiang, J. Opt. B Quantum Semiclass. Opt., 5, 283–288 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  5. H.-Y. Fan and N.-Q. Jiang, Chinese Phys. Lett., 19, 1403–1406 (2002).

    Article  ADS  Google Scholar 

  6. V. Namias, J. Inst. Math. Appl., 25, 241–265 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. P. Bykov and O. O. Silichev, Laser Resonators, Cambridge International Science, Cambridge (1995).

    Google Scholar 

  8. A. C. McBride and F. H. Kerr, IMA J. Appl. Math., 39, 159–175 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Mendlovic and H. M. Ozaktas, J. Opt. Soc. Amer. A, 10, 1875–1881 (1993).

    Article  ADS  Google Scholar 

  10. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, Appl. Opt., 33, 6188–6193 (1994).

    Article  ADS  Google Scholar 

  11. H. M. Ozaktas and D. Mendlovic, J. Opt. Soc. Amer. A, 10, 2522–2531 (1993).

    Article  ADS  Google Scholar 

  12. A. W. Lohmann, J. Opt. Soc. Amer. A, 10, 2181–2186 (1993).

    Article  ADS  Google Scholar 

  13. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  14. L. B. Almeida, IEEE Signal Processing Lett., 4, 15–17 (1997).

    Article  ADS  Google Scholar 

  15. A. I. Zayed, IEEE Signal Processing Lett., 5, 101–103 (1998).

    Article  ADS  Google Scholar 

  16. H.-Y. Fan and Y. Fan, Commun. Theor. Phys. (Beijing), 39, 417–420 (2003).

    MathSciNet  Google Scholar 

  17. F. T. Arrechi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A, 6, 2211–2237 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-guang Liu.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 161, No. 3, pp. 459–467, December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Sg., Fan, Hy. Convolution theorem for the three-dimensional entangled fractional Fourier transformation deduced from the tripartite entangled state representation. Theor Math Phys 161, 1714–1722 (2009). https://doi.org/10.1007/s11232-009-0156-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-009-0156-6

Keywords

Navigation