Skip to main content
Log in

About Intrinsic Transversality of Pairs of Sets

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

The article continues the study of the ‘regular’ arrangement of a collection of sets near a point in their intersection. Such regular intersection or, in other words, transversality properties are crucial for the validity of qualification conditions in optimization as well as subdifferential, normal cone and coderivative calculus, and convergence analysis of computational algorithms. One of the main motivations for the development of the transversality theory of collections of sets comes from the convergence analysis of alternating projections for solving feasibility problems. This article targets infinite dimensional extensions of the intrinsic transversality property introduced recently by Drusvyatskiy, Ioffe and Lewis as a sufficient condition for local linear convergence of alternating projections. Several characterizations of this property are established involving new limiting objects defined for pairs of sets. Special attention is given to the convex case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality, and linear regularity of convex sets. Trans. Am. Math. Soc. 357(10), 3831–3863 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996). https://doi.org/10.1137/S0036144593251710

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21(3), 475–501 (2013). https://doi.org/10.1007/s11228-013-0238-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21(3), 431–473 (2013). https://doi.org/10.1007/s11228-013-0239-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  7. Bregman, L.M.: The method of successive projection for finding a common point of convex sets. Sov. Math. Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  8. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

    Google Scholar 

  9. Dolecki, S.: Tangency and differentiation: some applications of convergence theory. Ann. Mat. Pura Appl. 130(4), 223–255 (1982). https://doi.org/10.1007/BF01761497

    Article  MathSciNet  MATH  Google Scholar 

  10. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2 edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014)

    Google Scholar 

  11. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15(6), 1637–1651 (2015). https://doi.org/10.1007/s10208-015-9279-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Inc., Englewood Cliffs (1974)

    MATH  Google Scholar 

  13. Gurin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7(6), 1–24 (1967). https://doi.org/10.1016/0041-5553(67)90113-9

    Article  Google Scholar 

  14. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). https://doi.org/10.1137/120902653

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirsch, M.W.: Differential Topology. Springer, New York (1976). Graduate Texts in Mathematics, No. 33

    Book  MATH  Google Scholar 

  16. Ioffe, A.D.: Approximate subdifferentials and applications. III. The metric theory. Mathematika 36(1), 1–38 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russ. Math. Surv. 55, 501–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ioffe, A.D.: Metric regularity—a survey. Part I. Theory. J. Aust. Math. Soc. 101 (2), 188–243 (2016). https://doi.org/10.1017/S1446788715000701

    Article  MathSciNet  MATH  Google Scholar 

  19. Ioffe, A.D.: Metric regularity—a survey. Part II. Applications. J. Aust. Math. Soc. 101(3), 376–417 (2016). https://doi.org/10.1017/S1446788715000695

    Article  MathSciNet  MATH  Google Scholar 

  20. Klatte, D., Li, W.: Asymptotic constraint qualifications and global error bounds for convex inequalities. Math. Program., Ser. A 84(1), 137–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. 116(3), 3325–3358 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kruger, A.Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1(1), 101–126 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14(2), 187–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwan. J. Math. 13(6A), 1737–1785 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kruger, A.Y.: Error bounds and metric subregularity. Optimization 64(1), 49–79 (2015). https://doi.org/10.1080/02331934.2014.938074

    Article  MathSciNet  MATH  Google Scholar 

  26. Kruger, A.Y., López, M.A.: Stationarity and regularity of infinite collections of sets. J. Optim. Theory Appl. 154(2), 339–369 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kruger, A.Y., Luke, D.R., Thao, N.H.: About subtransversality of collections of sets. Set-Valued Var. Anal. 1–29. (2017). https://doi.org/10.1007/s11228-017-0436-5

  28. Kruger, A.Y., Luke, D.R., Thao, N.H.: Set regularities and feasibility problems. Math. Program., Ser. B 1–33. (2017). https://doi.org/10.1007/s10107-016-1039-x

  29. Kruger, A.Y., Thao, N.H.: About uniform regularity of collections of sets. Serdica Math. J. 39, 287–312 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Kruger, A.Y., Thao, N.H.: About [q]-regularity properties of collections of sets. J. Math. Anal. Appl. 416(2), 471–496 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164(1), 41–67 (2015). https://doi.org/10.1007/s10957-014-0556-0

    Article  MathSciNet  MATH  Google Scholar 

  32. Kruger, A.Y., Thao, N.H.: Regularity of collections of sets and convergence of inexact alternating projections. J. Convex Anal. 23(3), 823–847 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009). https://doi.org/10.1007/s10208-008-9036-y

    Article  MathSciNet  MATH  Google Scholar 

  34. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1), 216–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, C., Ng, K.F.: Strong CHIP for infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 16(2), 311–340 (2005). https://doi.org/10.1137/040613238

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, C., Ng, K.F.: The dual normal CHIP and linear regularity for infinite systems of convex sets in Banach spaces. SIAM J. Optim. 24(3), 1075–1101 (2014). https://doi.org/10.1137/130941493

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, C., Ng, K.F., Pong, T.K.: The SECQ, linear regularity, and the strong CHIP for an infinite system of closed convex sets in normed linear spaces. SIAM J. Optim. 18(2), 643–665 (2007). https://doi.org/10.1137/060652087

    Article  MathSciNet  MATH  Google Scholar 

  38. Luke, D.R., Thao, N.H., Tam, M.K.: Quantitative convergence analysis of iterated expansive, set-valued mappings. Math. Oper. Res. (2017). To appear

  39. Luke, D.R., Thao, N.H., Teboulle, M.: Necessary conditions for linear convergence of Picard iterations and application to alternating projections, pp. 1–22. arXiv:1704.08926 (2017)

  40. Mordukhovich, B.S.: Approximation Methods in Problems of Optimization and Control. Moscow, Nauka (1988). In Russian

    MATH  Google Scholar 

  41. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

    Google Scholar 

  42. Ng, K.F., Yang, W.H.: Regularities and their relations to error bounds. Math. Program., Ser. A 99(3), 521–538 (2004). https://doi.org/10.1007/s10107-003-0464-9

    Article  MathSciNet  MATH  Google Scholar 

  43. Ng, K.F., Zang, R.: Linear regularity and ϕ-regularity of nonconvex sets. J. Math. Anal. Appl. 328 (1), 257–280 (2007). https://doi.org/10.1016/j.jmaa.2006.05.028

    Article  MathSciNet  MATH  Google Scholar 

  44. Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9(1–2), 187–216 (2001). Wellposedness in Optimization and Related Topics (Gargnano, 1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. 16(2), 425–455 (2016). https://doi.org/10.1007/s10208-015-9253-0

    Article  MathSciNet  MATH  Google Scholar 

  46. Penot, J.P.: Calculus without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New York (2013)

    Book  Google Scholar 

  47. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, 2nd edn, vol. 1364. Springer, Berlin (1993)

    Google Scholar 

  48. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  49. Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19(1), 62–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zheng, X.Y., Wei, Z., Yao, J.C.: Uniform subsmoothness and linear regularity for a collection of infinitely many closed sets. Nonlinear Anal. 73(2), 413–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Nguyen Hieu Thao and the referees for the careful reading of the manuscript and constructive comments and suggestions.

The research was supported by Australian Research Council, project DP160100854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Kruger.

Additional information

Dedicated to the memory of Professor Jonathan Michael Borwein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruger, A.Y. About Intrinsic Transversality of Pairs of Sets. Set-Valued Var. Anal 26, 111–142 (2018). https://doi.org/10.1007/s11228-017-0446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-017-0446-3

Keywords

Mathematics Subject Classification (2010)

Navigation