Skip to main content
Log in

A Convex-Analytical Approach to Extension Results for n-Cyclically Monotone Operators

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

Results concerning extensions of monotone operators have a long history dating back to a classical paper by Debrunner and Flor from 1964. In 1999, Voisei obtained refinements of Debrunner and Flor’s work for n-cyclically monotone operators. His proofs rely on von Neumann’s minimax theorem as well as Kakutani’s fixed point theorem. In this note, we provide a new proof of the central case of Voisei’s work. This proof is more elementary and rooted in convex analysis. It utilizes only Fitzpatrick functions and Fenchel–Rockafellar duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity, and Rockafellar’s antiderivative. Nonlinear Anal. (in press)

  2. Bauschke, H.H.: Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings. Proc. Amer. Math. Soc. 135, 135–139 (2007)

    Article  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. (to appear)

  4. Bauschke, H.H., McLaren, D.A., Sendov, H.S.: Fitzpatrick functions: inequalities, examples and remarks on a problem by S. Fitzpatrick. J. Convex Anal. (in press)

  5. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. (in press)

  6. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, Berlin Heidelberg New York (2005)

    MATH  Google Scholar 

  7. Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North Holland, Amsterdam, The Netherlands (1973)

    MATH  Google Scholar 

  8. Burachik, R.S., Fitzpatrick, S.: On the Fitzpatrick family associated to some subdifferentials. J. Nonlinear Convex Anal. 6, 165–171 (2005)

    MATH  Google Scholar 

  9. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002)

    Article  MATH  Google Scholar 

  10. Burachik, R.S., Svaiter, B.F.: Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc. 131, 2379–2383 (2003)

    Article  MATH  Google Scholar 

  11. Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15, 445–447 (1964)

    Article  MATH  Google Scholar 

  12. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). In: Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65. Australian National University, Canberra, Australia (1988)

  13. García, Y., Lassonde, M., Revalski, J.P.: Extended sums and extended compositions of monotone operators. J. Convex Anal. (in press)

  14. Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, Berlin Heidelberg New York (1975)

    MATH  Google Scholar 

  15. Martínez-Legaz, J.-E., Svaiter, B.F.: Monotone operators representable by l.s.c. convex functions. Set.-Valued Anal. 13, 21–46 (2005)

    Article  MATH  Google Scholar 

  16. Martínez-Legaz, J.-E., Théra, M.: A convex representation of maximal monotone operators. J. Nonlinear Convex Anal. 2, 243–247 (2001)

    MATH  Google Scholar 

  17. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  Google Scholar 

  18. Penot, J.P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58, 855–871 (2004)

    Article  MATH  Google Scholar 

  19. Reich, S., Simons, S.: Fenchel duality, Fitzpatrick functions and the Kirszbraun–Valentine extension theorem. Proc. Amer. Math. Soc. 133, 2657–2660 (2005)

    Article  MATH  Google Scholar 

  20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  21. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin Heidelberg New York (1998)

    MATH  Google Scholar 

  22. Simons, S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  23. Simons, S., Zălinescu, C.: A new proof for Rockafellar’s characterization of maximal monotone operators. Proc. Amer. Math. Soc. 132, 2969–2972 (2004)

    Article  MATH  Google Scholar 

  24. Simons, S., Zălinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6, 1–22 (2005)

    MATH  Google Scholar 

  25. Voisei, M.D.: Extension theorems for k-monotone operators. Stud. Cercet. Stiinţ. - Univ. Bacaū, Ser. Mat. 9, 35–242 (1999)

    Google Scholar 

  26. Voisei, M.D.: A maximality theorem for the sum of maximal monotone operators in non-reflexive Banach spaces. Math. Sci. Res. J. 10, 36–41 (2006)

    MATH  Google Scholar 

  27. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauschke, H.H., Wang, X. A Convex-Analytical Approach to Extension Results for n-Cyclically Monotone Operators. Set-Valued Anal 15, 297–306 (2007). https://doi.org/10.1007/s11228-006-0029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-006-0029-1

Key words

Mathematics Subject Classifications (2000)

Navigation