Skip to main content
Log in

A novel attention fusion network-based framework to ensemble the predictions of CNNs for lymph node metastasis detection

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Diagnosis of lymph node metastases is a challenging task for pathologists, involving an extensive screening of the pathological scans. Automating diagnostic processes reduces the workload of pathologists and yields high accuracy by the virtue of advances in technology. In this study, a novel ensemble-based framework is proposed for the classification of lymph node metastases. The proposed ensemble framework comprises different pre-trained CNN models such as DenseNet201, InceptionV3 and ResNeXt-50. In the proposed framework, an attention fusion network is utilized to amalgamate the predictions of the individual models. The proposed framework achieves an AUC-ROC of 0.9816 which surpasses the highest AUC-ROC achieved by the conventional approaches on the PCam benchmark dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chalbatani GM, Dana H, Memari F, Gharagozlou E, Ashjaei S, Kheirandish P, Marmari V, Mahmoudzadeh H, Mozayani F, Maleki AR et al (2019) Biological function and molecular mechanism of piRNA in cancer. Practical Lab Med 13:e00113

    Article  Google Scholar 

  2. Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der Laak JA, Hermsen M, Manson QF, Balkenhol M et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210

    Article  Google Scholar 

  3. Nci-dictionaries. URL https://www.cancer.gov/publications/dictionaries/cancer-terms/def/metastasis. Accessed 22 Mar 2020

  4. Li C, Wang X, Liu W, Latecki LJ, Wang B, Huang J (2019) Weakly supervised mitosis detection in breast histopathology images using concentric loss. Med Image Anal 53:165–178

    Article  Google Scholar 

  5. Kassani SH, Kassani PH, Wesolowski MJ, Schneider KA, Deters R (2019) Classification of histopathological biopsy images using ensemble of deep learning networks. arXiv preprint arXiv:1909.11870

  6. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  7. Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, Venugopalan S, Timofeev A, Nelson PQ, Corrado GS, et al. (2017) Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442

  8. Veeling BS, Linmans J, Winkens J, Cohen T, Welling M (2018) Rotation equivariant CNNS for digital pathology. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp 210–218. Springer

  9. Pang H, Lin W, Wang C, Zhao C (2018) Using transfer learning to detect breast cancer without network training. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp 381–385. IEEE

  10. Jaiswal AK, Panshin I, Shulkin D, Aneja N, Abramov S (2019) Semi-supervised learning for cancer detection of lymph node metastases. arXiv preprint arXiv:1906.09587

  11. Teh EW, Taylor GW (2019) Learning with less data via weakly labeled patch classification in digital pathology. arXiv, pages arXiv–1911

  12. Palatnik de Sousa I, Maria Bernardes Rebuzzi Vellasco M, Costa da Silva E (2019) Local interpretable model-agnostic explanations for classification of lymph node metastases. Sensors 19(13):2969

    Article  Google Scholar 

  13. Burcak KC, Baykan ÖK, Uğuz H (2020) A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model. J Supercomput. https://doi.org/10.1007/s11227-020-03321-y

    Article  Google Scholar 

  14. Acharya S, Alsadoon A, Prasad PW, Abdullah S, Deva A (2020) Deep convolutional network for breast cancer classification: enhanced loss function (ELF). J Supercomput. https://doi.org/10.1007/s11227-020-03157-6

    Article  Google Scholar 

  15. Khamparia A, Gupta D, de Albuquerque VH, Sangaiah AK, Jhaveri RH (2020) Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J Supercomput. https://doi.org/10.1007/s11227-020-03159-4

    Article  Google Scholar 

  16. Zhou L-Q, Xing-Long W, Huang S-Y, Ge-Ge W, Ye H-R, Wei Q, Bao L-Y et al (2020) Lymph node metastasis prediction from primary breast cancer us images using deep learning. Radiology 294(1):19–28

    Article  Google Scholar 

  17. Sun Q, Lin X, Zhao Y, Li L, Yan K, Liang D, Sun D, Li ZC (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front Oncol 10:53

    Article  Google Scholar 

  18. Sadeghi M, Maldonado I, Abele N, Haybaeck J, Boese A, Poudel P, Friebe M (2019) Feedback-based self-improving CNN algorithm for breast cancer lymph node metastasis detection in real clinical environment. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7212–7215. IEEE

  19. Kumar M, Alshehri M, AlGhamdi R, Sharma P, Deep V (2020) A DE-ANN inspired skin cancer detection approach using fuzzy c-means clustering. Mobile Netw Appl 25:1319–1329

    Article  Google Scholar 

  20. Goyal V, Singh G, Tiwari OM, Punia SK, Kumar M (2019) Intelligent skin cancer detection mobile application using convolution neural network. J Adv Res Dyn Control Syst 11(7(SI)):253–259

    Google Scholar 

  21. Vo DM, Nguyen NQ, Lee SW (2019) Classification of breast cancer histology images using incremental boosting convolution networks. Inf Sci 482:123–138

    Article  Google Scholar 

  22. Bejnordi BE, Zuidhof G, Balkenhol M, Hermsen M, Bult P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak J (2017) Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J Med Imag 4(4):044504

    Article  Google Scholar 

  23. Nahid AA, Mehrabi MA, Kong Y (2018) Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. BioMed Res Int. https://doi.org/10.1155/2018/2362108

    Article  Google Scholar 

  24. Alom MZ, Yakopcic C, Nasrin MS, Taha TM, Asari VK (2019) Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J Digital Imaging 32(4):605–617

    Article  Google Scholar 

  25. Bas Veeling. Pcam-dataset. URL https://www.kaggle.com/c/histopathologic-cancer-detection. Accessed 15 Jan 2020

  26. Qureshi SA, Saha S, Hasanuzzaman M, Dias G (2019) Multitask representation learning for multimodal estimation of depression level. IEEE Intell Syst 34(5):45–52

    Article  Google Scholar 

  27. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708

  28. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826

  29. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500

  30. Smith LN (2018) A disciplined approach to neural network hyper-parameters: part 1–learning rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820

  31. Ho Y, Wookey S (2019) The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8:4806–4813

    Article  Google Scholar 

  32. Balles L, Romero J, Hennig P (2016) Coupling adaptive batch sizes with learning rates. arXiv preprint arXiv:1612.05086

  33. Poria S, Cambria E, Hazarika D, Mazumder N, Zadeh A, Morency LP (2017) Multi-level multiple attentions for contextual multimodal sentiment analysis. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 1033–1038. IEEE

  34. Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: International MICCAI Brainlesion Workshop, pp. 61–72. Springer

  35. Matsunaga K, Hamada A, Minagawa A, Koga H (2017) Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble. arXiv preprint arXiv:1703.03108

  36. Jin H, Li Z, Tong R, Lin L (2018) A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection. Med Phys 45(5):2097–2107

    Article  Google Scholar 

  37. Nalepa J, Myller M, Kawulok M (2019) Training-and test-time data augmentation for hyperspectral image segmentation. IEEE Geosci Remote Sens Lett 17(2):292–296

    Article  Google Scholar 

  38. Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T (2019) Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338:34–45

    Article  Google Scholar 

  39. Waibel DJ, Boushehri SS, Marr C (2020) Instantdl-an easy-to-use deep learning pipeline for image segmentation and classification. bioRxiv

  40. Kandel I, Castelli M (2020) How deeply to fine-tune a convolutional neural network: a case study using a histopathology dataset. Appl Sci 10(10):3359

    Article  Google Scholar 

  41. Duan Y, Sun L, Wang Y (2019) Se-densenet: attention-based network for detecting pathological images of metastatic breast cancer. In: Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition, pp. 240–245

  42. Liu M, Yu Y, Liao Q, Zhang J (2020) Histopathologic cancer detection by dense-attention network with incorporation of prior knowledge. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 466–470. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukta Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rane, C., Mehrotra, R., Bhattacharyya, S. et al. A novel attention fusion network-based framework to ensemble the predictions of CNNs for lymph node metastasis detection. J Supercomput 77, 4201–4220 (2021). https://doi.org/10.1007/s11227-020-03432-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03432-6

Keywords

Navigation