Skip to main content
Log in

Correspondence Between Kripke Frames and Projective Geometries

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In this paper we show that some orthogeometries, i.e. projective geometries each defined using a ternary collinearity relation and equipped with a binary orthogonality relation, which are extensively studied in mathematics and quantum theory, correspond to Kripke frames, each defined using a binary relation, satisfying a few conditions. To be precise, we will define four special kinds of Kripke frames, namely, geometric frames, irreducible geometric frames, complete geometric frames and quantum Kripke frames; and we will show that they correspond to pure orthogeometries (or, equivalently, projective geometries with pure polarities), irreducible pure orthogeometries, Hilbertian geometries and irreducible Hilbertian geometries, respectively. The discovery of these correspondences raises interesting research topics and will enrich the study of logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiello, M., M. I. Pratt-Hartmann, and J. van Benthem, Handbook of Spatial Logics, Springer Netherlands, Dordrecht, 2007.

  2. Balbiani, P., The modal multilogic of geometry, Journal of Applied Non-Classical Logics 8(3):259–281, 1998.

    Article  Google Scholar 

  3. Balbiani, P., L. F. D. Cerro, T. Tinchev, and D. Vakarelov, Modal logics for incidence geometries, Journal of Logic and Computation 7(1):59–78, 1997.

    Article  Google Scholar 

  4. Balbiani, P., and V. Goranko, Modal logics for parallelism, orthogonality, and affine geometries, Journal of Applied Non-Classical Logics 12(3-4):365–397, 2002.

    Article  Google Scholar 

  5. Baltag, A., and S. Smets, Complete axiomatizations for quantum actions, International Journal of Theoretical Physics 44(12):2267–2282, 2005.

    Article  Google Scholar 

  6. Berberian, S. K., Introduction to Hilbert Space, Oxford University Press, Oxford, 1961.

    Google Scholar 

  7. Birkhoff, G., and J. von Neumann, The logic of quantum mechanics, The Annals of Mathematics 37:823–843, 1936.

    Article  Google Scholar 

  8. Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, Cambridge University Press, Cambridge, 2001.

    Book  Google Scholar 

  9. Buekenhout, F., A theorem of parmentier characterizing projective spaces by polarities, in F. de Clerck and J. Hirschfeld (eds.), Finite Geometry and Combinatorics, Cambridge University Press, Cambridge, 1993, pp. 69–72.

    Chapter  Google Scholar 

  10. Coxeter, H. S. M., Projective Geometry, 2nd edn, Springer, New York, 1987.

    Google Scholar 

  11. Dishkant, H., Semantics of the minimal logic of quantum mechanics, Studia Logica 30(1):23–30, 1972.

    Article  Google Scholar 

  12. Faure, C.-A., and A. Frölicher, Dualities for infinite-dimensional projective geometries, Geometriae Dedicata 56(3):225–236, 1995.

  13. Faure, C.-A., and A. Frölicher, Modern Projective Geometry, Springer Netherlands, Dordrecht, 2000.

  14. Goldblatt, R. I., Semantic analysis of orthologic, Journal of Philosophical Logic 3:19–35, 1974.

    Article  Google Scholar 

  15. Hedlíková, J., and S. Pulmannová, Orthogonality spaces and atomistic orthocomplemented lattices, Czechoslovak Mathematical Journal 41:8–23, 1991.

    Google Scholar 

  16. Moore, D. J., Categories of representations of physical systems, Helvetica Physica Acta 68:658–678, 1995.

    Google Scholar 

  17. Piron, C., Foundations of Quantum Physics, W. A. Benjamin Inc., Reading, 1976.

  18. Stebletsova, V., Modal Logic of Projective Geometries of Finite Dimension. Technical report, Department of Philosophy, Utrecht University, 1998.

  19. Stubbe, I., and B. van Steirteghem, Propositional systems, Hilbert lattices and generalized Hilbert spaces, in K. Engesser, D. M. Gabbay, and D. Lehmann, (eds.), Handbook of Quantum Logic and Quantum Structures: Quantum Structures, Elsevier, Amsterdam, 2007, pp. 477–523.

  20. Varadarajan, V. S., Geometry of Quantum Theory, 2nd edn, Springer, New York, 1985.

    Google Scholar 

  21. Veblen, O., and J. W. Young, Projective Geometry, Blaisdell Publishing Company, New York, 1910.

    Google Scholar 

  22. Venema, Y., Points, lines and diamonds: A two-sorted modal logic for projective planes, Journal of Logic and Computation 9(5):601–621, 1999.

    Article  Google Scholar 

  23. Zhong, S., Orthogonality and Quantum Geometry: Towards a Relational Reconstruction of Quantum Theory, PhD thesis, University of Amsterdam, 2015. http://www.illc.uva.nl/Research/Publications/Dissertations/DS-2015-03.text.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyang Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S. Correspondence Between Kripke Frames and Projective Geometries. Stud Logica 106, 167–189 (2018). https://doi.org/10.1007/s11225-017-9733-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9733-0

Keywords

Navigation