Skip to main content
Log in

Complete Axiomatizations for Quantum Actions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present two equivalent axiomatizations for a logic of quantum actions: one in terms of quantum transition systems, and the other in terms of quantum dynamic algebras. The main contribution of the paper is conceptual, offering a new view of quantum structures in terms of their underlying logical dynamics. We also prove Representation Theorems, showing these axiomatizations to be complete with respect to the natural Hilbert-space semantics. The advantages of this setting are many: (1) it provides a clear and intuitive dynamic-operational meaning to key postulates (e.g. Orthomodularity, Covering Law); (2) it reduces the complexity of the Solèr–Mayet axiomatization by replacing some of their key higher-order concepts (e.g. “automorphisms of the ortholattice”) by first-order objects (“actions”) in our structure; (3) it provides a link between traditional quantum logic and the needs of quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramsky, S. and Coecke, B. (2004). A categorial semantics of quantum protocols. In Proceedings of the 19th annual IEEE symposium on Logic (LICS) in Computer Science. IEEE Computer Society, 2004. Available at arXiv:quant-ph/0402130.

  • Amemiya, I. and Araki, H. (1967). A remark on Piron’s paper. Publications of the Research Institute of Mathematical Sciences, Kyoto University, Series A 2, 423–427.

  • Amira, H., Coecke, B., and Stubbe, I. (1998). How quantales emerge by introducing induction within the operational approach. Helvetica Physica Acta 71, 554–572.

    MathSciNet  Google Scholar 

  • Baltag, A. and Smets, S. (2004). The logic of quantum programs. In Proceedings of the 2nd International Workshop on Quantum Programming Languages (QPL2004), TUCS General Publication, P. Selinger, ed., Turku Center for Computer Science, Finland, vol. 33, pp. 39–56.

  • Beltrametti, E. G. and Cassinelli, G. (1977). On state transformations induced by yes-no experiments, in the context of quantum logic. Journal of Philosophical Logic 6, 369–379.

    Article  MathSciNet  Google Scholar 

  • Coecke, B. and Smets, S. (to appear). The Sasaki hook is not a [static] implicative connective but induces a backward [in time] dynamic one that assigns causes. International Journal of Theoretical Physics. Available at arXiv: quant-ph/0111076.

  • Coecke, B. and Stubbe, I. (1999). On a duality of quantales emerging from an operational resolution. International Journal of Theoretical Physics 38, 3269–3281.

    Article  MathSciNet  Google Scholar 

  • Coecke, B., Moore, D. J., and Smets, S. (2004). Logic of dynamics & dynamics of logic; some paradigm examples. Logic, Epistemology and the Unity of Science, S. Rahman, J. Symons, D. M. Gabbay, and J. P. Van Bendegem, eds., Kluwer Academic, Dordrecht.

    Google Scholar 

  • Coecke, B., Moore, D. J., and Stubbe, I. (2001). Quantaloids describing causation and propagation for physical properties. Foundations of Physics Letters 14, 357–367. Available at (arXiv: quant-ph/0009100).

    Google Scholar 

  • Dalla Chiara, M., Giuntini, R., and Greechie, R. (2004). Reasoning in Quantum Theory, Sharp and Unsharp Quantum Logics, Kluwer Academic, Dordrecht .

    MATH  Google Scholar 

  • Daniel, W. (1982). On the non-unitary evolution of quantum systems. Helvetica Physica Acta 55, 330–338.

    MathSciNet  Google Scholar 

  • Daniel, W. (1989). Axiomatic description of irreversible and reversible evolution of a physical system. Helvetica Physica Acta 62, 941–968.

    MathSciNet  ADS  Google Scholar 

  • Faure, C. L.-A., Moore, D. J., and Piron, C. (1995). Deterministic evolutions and schrodinger flows. Helvetica Physica Acta 68, 150–157.

    MathSciNet  Google Scholar 

  • Foulis, D. J. and Randall, C. H. (1971). Lexicographic orthogonality. Journal of Combinatorial Theory 11(2), 157–162.

    Article  MathSciNet  Google Scholar 

  • Goldblatt, R. (1974). Semantic analysis of orthologic. Journal of Philosophical Logic 3, 19–35.

    Article  MathSciNet  Google Scholar 

  • Goldblatt, R. (1984). Orthomodularity is not elementary. The Journal of Symbolic Logic 49, 401–404.

    Article  MathSciNet  Google Scholar 

  • Hardegree, G. M. (1975). Stalnaker conditional and quantum logic. Journal of Philosophical Logic 4, 399–421.

    Article  MathSciNet  Google Scholar 

  • Hardegree, G. M. (1979). The conditional in abstract and concrete quantum logic. The Logico-Algebraic Approach to Quantum Mechanics, C. A. Hooker, ed., Vol. 2, D. Reidel, Dordrecht.

    Google Scholar 

  • Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logic, MIT-Press, Massachusetts.

    MATH  Google Scholar 

  • Jauch, J. M. (1968). Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  • Jauch, J. M. and Piron, C. (1969). On the structure of quantal proposition systems. Helvetica Physica Acta 42, 842–848.

    MathSciNet  Google Scholar 

  • Keller, H. A. (1980). Ein nichtklassischer hilbertscher Raum. Mathematische Zeitschrift 172, 41–49.

    Article  MathSciNet  Google Scholar 

  • Mayet, R. (1998). Some characterizations of the underlying division ring of a Hilbert lattice by automorphisms. International Journal of Theoretical Physics 37(1), 109–114.

    Article  MathSciNet  Google Scholar 

  • Pauli, W. (1980). Handbuch der Physik, Vol. 5, Part 1: Prinzipien der Quantentheorie 1 (1958); English translation by P. Achuthan and K. Venkatsesan: General Principles of Quantum Mechanics, Springer Verlag, Berlin.

  • Piron, C. (1964). Axiomatique quantique (PhD-Thesis), Helvetica Physica Acta, 37, 439–468, English Translation by M. Cole: “Quantum Axiomatics” RB4 Technical memo 107/106/104, GPO Engineering Department (London).

  • Piron, C. (1976). Foundations of Quantum Physics, W.A. Benjamin, Massachusetts.

    MATH  Google Scholar 

  • Smets, S. (2001). On Causation and a counterfactual in quantum logic: The Sasaki hook. Logique et Analyse 173–175, 307–325.

    MathSciNet  Google Scholar 

  • Smets, S. (2003). In defense of operational quantum logic. Logic and Logical Philosophy 11, 191–212.

    MathSciNet  Google Scholar 

  • Smets, S. (to appear). From intuitionistic logic to dynamic operational quantum logic. Poznan Studies in Philosophy and the Humanities.

  • Solèr, M. P. (1995). Characterization of Hilbert spaces by orthomodular spaces. Communications in Algebra 23(1), 219–243.

    MathSciNet  Google Scholar 

  • van Benthem, J. (1996). Exploring Logical Dynamics, Studies in Logic, Language and Information, CSLI Publications, Stanford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Smets.

Additional information

PACS: 02.10.-v Logic; set theory and algebra; 03.65.-w Quantum mechanics; 03.65.Fd Algebraic methods; 03.67.-a Quantum information.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltag, A., Smets, S. Complete Axiomatizations for Quantum Actions. Int J Theor Phys 44, 2267–2282 (2005). https://doi.org/10.1007/s10773-005-8022-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-8022-2

Keywords

Navigation