Skip to main content
Log in

Theoretical investigation of structural parameters, reactivity behavior, and thermodynamic properties of Anderson polyoxometalate (POM)

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Polyoxometalates (POMs) are widely used complexes in catalytic reactions owing to their redox properties. We have carried out a theoretical study of these molecules using density functional theory (DFT) in the gas phase and in solution. We focused our investigation on geometrical parameters, global and local reactivity descriptors, and redox and thermodynamic properties. The aim of this study is to determine the most reactive site within the POM and to define the most reactive POM among the nine proposed structures. The present work shows that the global reactivity descriptors and Fukui function for electrophilic and nucleophilic attacks have a higher correlation with the fragments constituting the POM; furthermore, the solvent effect is very noticeable in the evaluation of the different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Pope M, Jeannin Y, Fournier M (1983) Heteropoly and isopoly oxometalates, vol 8. Springer-Verlag, Berlin

    Google Scholar 

  2. Anderson JS (1937) Nat 140:850–850

    CAS  Google Scholar 

  3. Evans HT (1948) J Am Chem Soc 70:1291–1292

    CAS  Google Scholar 

  4. Nomiya K, Takahashi T, Shirai T, Miwa M (1987) Polyhedron 6:213–218

    CAS  Google Scholar 

  5. Lee U, Sasaki Y (1984) Chem Lett 13:1297–1300

    Google Scholar 

  6. Himeno S, Murata S, Eda K (2009) Dalt Trans 31:6114–6119

    Google Scholar 

  7. Blazevic A, Al-Sayed E, Roller A, Giester G, Rompel A (2015) Chem - A Eur J 21:4762–4771

    CAS  Google Scholar 

  8. Ito F, Ozeki T, Ichida H, Miyamae H, Sasaki Y (1989) Acta Crystallogr Sect C 45:946–947

    Google Scholar 

  9. Dutta D, Jana AD, Debnath M, Bhaumik A, Marek J, Ali M (2010) Dalt Trans 39:11551–11559

    CAS  Google Scholar 

  10. Ogawa A, Yamato H, Lee U, Ichida H, Kobayashi A, Sasaki Y (1988) Acta Cryst. Sec C: Crys Struc Commun 44:1879–1881

    Google Scholar 

  11. Ozawa Y, Hayashi Y, Isobe K (1991) Acta Cryst. Sec C: Crys Struc Commun 47:637–638

    Google Scholar 

  12. Honda D, Ikegami S, Inoue T, Ozeki T, Yagasaki A (2007) Inorg Chem 46:1464–1470

    CAS  PubMed  Google Scholar 

  13. López X, Bo C, Poblet JM (2002) J Am Chem Soc 124:12574–12582

    PubMed  Google Scholar 

  14. Poblet J, López X, Bo C (2003) Chem Soc Rev 32:297–308

    CAS  PubMed  Google Scholar 

  15. Bridgeman AJ, Cavigliasso G (2002) Polyhedron 21:2201–2206

    CAS  Google Scholar 

  16. Bridgeman AJ, Cavigliasso G (2001) Polyhedron 20:3101–3111

    CAS  Google Scholar 

  17. Bridgeman AJ, Cavigliasso G (2002) Inorg Chem 41:3500–3507

    CAS  PubMed  Google Scholar 

  18. Borzenko MI, Nazmutdinov RR, Glukhov DV, Tsirlina GA, Probst M (2005) Chem Phys 319:200–209

    CAS  Google Scholar 

  19. Harrup MK, Hill CL (1996) J Mol Catal A Chem 106:57–66

    CAS  Google Scholar 

  20. Ye T, Wang J, Dong G, Jiang Y, Feng C, Yang Y (2016) Chinese J Chem 34:747–756

    CAS  Google Scholar 

  21. André D, Belletti A, Cavani F, Degrand H, Dubois JL, Trifirò F (2005) Stud Surf Sci Catal 155:57–66

    Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J, JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revis. A.03, Gaussian, Inc., Wallingford CT 

  23. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Google Scholar 

  24. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Google Scholar 

  25. Parr R, Weitao Y (1989) “Chemical potential derivatives.” In Density-functional theory of atoms and molecules. Oxford University Press

  26. Salahub DR, Zerner MC (1989) Challenge of d and f electrons. Am Chem Soc

  27. Chai J, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    CAS  PubMed  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:1372–1377

    CAS  Google Scholar 

  30. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  32. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:720–723

    Google Scholar 

  33. Hehre WJ, Ditchfield K, Pople JA (1972) J Chem Phys 56:2257–2261

    CAS  Google Scholar 

  34. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    CAS  Google Scholar 

  35. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    CAS  Google Scholar 

  37. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Google Scholar 

  38. Pascual-ahuir JL, Silla E, Tuñon I (1994) J Comput Chem 15:1127–1138

    CAS  Google Scholar 

  39. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Google Scholar 

  40. Miertus̃ S, Tomasi J (1982) Chem Phys 65:239–245

  41. Mora-Diez N, Senent ML, García B (2006) Chem Phys 324:350–358

    CAS  Google Scholar 

  42. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    CAS  Google Scholar 

  43. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    CAS  PubMed  Google Scholar 

  44. Yan J, Gong K, Xue X, He X, Zhao C, Han Z, Yu H (2014) Eur J Inorg Chem 2014:5969–5976

    CAS  Google Scholar 

  45. Lee U, Joo H-C, Kwon J-S, Cho M-A (2001) Acta Crystallogr. Sect E Struct Reports Online 57:i112–i114

    CAS  Google Scholar 

  46. Botto IL, Cabello CI, Minelli G, Occhiuzzi M (1994) Mater Chem Phys 39:21–28

    CAS  Google Scholar 

  47. Gumerova NI, Roller A, Rompel A (2016) Eur J Inorg Chem 2016:5507–5511

    CAS  Google Scholar 

  48. Gumerova NI, Roller A, Rompel A (2016) Chem Commun 52:9263–9266

    CAS  Google Scholar 

  49. Evans Jnr HT (1974) Acta Crystallogr Sect B 30:2095–2100

  50. Lorenzo-Luis PA, Gili P, Sánchez A, Rodriguez-Castellón E, Jiménez-Jiménez J, Ruiz-Pérez C, Solans X (1999) Transit Met Chem 24:686–692

    CAS  Google Scholar 

  51. Naruke H, Yamase T (1992) Acta Crystallogr Sect C 48:597–599

    Google Scholar 

  52. Li Y, Evans JNS (1995) J Am Chem Soc 117:7756–7759

    CAS  Google Scholar 

  53. Khenkin AM, Neumann R (2003) Adv Synth Catal 344:1017–1021

    Google Scholar 

  54. Da Silva RR, Ramalho TC, Santos JM, Figueroa-Villar JD (2006) J Phys Chem A 110:1031–1040

    PubMed  Google Scholar 

  55. La Porta FA, Ramalho TC, Santiago RT, Rocha MVJ, Da Cunha EFF (2011) J Phys Chem A 115:824–833

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ikram Nour El Hoda Guermi has contributed in the calculation realization and the results interpretations as well as the writing of this manuscript.

Amar Saal has helped with the results interpretations and the correction of the manuscript.

Corresponding author

Correspondence to Ikram Nour el Hoda Guermi.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guermi, I.N., Saal, A. Theoretical investigation of structural parameters, reactivity behavior, and thermodynamic properties of Anderson polyoxometalate (POM). Struct Chem 34, 1231–1240 (2023). https://doi.org/10.1007/s11224-022-02088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02088-7

Keywords

Navigation