Skip to main content
Log in

The role of hydrogen bonds in thermodynamic and structural properties in binary mixtures of morpholine + 2-methylcyclohexanol: a combined experimental and computational study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic properties of binary mixtures of 2-methylcyclohexanol with morpholine are measured as a function of composition and temperature. The excess molar volumes were calculated by experimental data. The excess molar volumes are negative over the entire mole fractions. Density functional theory and molecular dynamics (MD) simulation were used to determine the microscopic structure of this mixture in the gas and liquid phases, respectively. In addition, the quantum theory of atoms in molecules was applied to analyze hydrogen-bonding interactions. From MD simulation, density, radial distribution functions, and combined distribution functions of the mixtures with different mole fractions at 298.15 K and 1.0 atm were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Weinhold F, Arunan E, Desiraju GR, Klein RA (2011). Pure Appl. Chem 83:1637–1641

    Article  CAS  Google Scholar 

  2. Biedermann F, Schneider HJ (2014). Chem Rev 116:5216–5300

    Article  CAS  Google Scholar 

  3. Larson JW, McMahon TB (1984). Inorg. Chem. 23:2029–2033

    Article  CAS  Google Scholar 

  4. Legon AC, Millen DJ (1987). Chem Soc Rev 16:467–498

    Article  CAS  Google Scholar 

  5. Grabowsk SJ (2006) Hydrogen bonding: new insights. Springer

    Book  Google Scholar 

  6. Jeffrey GA, Saenger W (2012) Hydrogen bonding in biological structures. Springer

    Google Scholar 

  7. Steiner T (2002). Ang Chem Int Edn 41:48–76

    Article  CAS  Google Scholar 

  8. Sánchez O (2019). Molecules 24:1–4

    Article  CAS  Google Scholar 

  9. Shakila A, Ravikumar S, Raveendra M, Sivakumar K, Raju R, Pandiyan V (2019). Phys Chem Liq 57:117–136

    Article  CAS  Google Scholar 

  10. Francesconi R, Comelli F (1999). J Chem Eng Data. 44:44–47

    Article  CAS  Google Scholar 

  11. Löwen B, Schulz S (1995). Thermochim Acta 262:69–82

    Article  Google Scholar 

  12. Padro JA, Saiz K, Guardia E (1997). J Mol Struct 416:243–248

    Article  CAS  Google Scholar 

  13. Wu HS, Locke WE, Sandler SI (1991). J Chem Eng Data 36:127–130

    Article  CAS  Google Scholar 

  14. Desai MN, Shah CB, Desai YB, Desai SM (1969). British Corrosion Journal. 4:315–317

    Article  CAS  Google Scholar 

  15. EPA Chemical and Products Database (CPDat), 2-methylcyclohexanol, mixed isomers. Address: https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID90862235#exposure

  16. Perryman AL, Zhang Q, Soutter HH (2010). Chem Biol Drug. 75:257–268

    Article  CAS  Google Scholar 

  17. Domańska U, Marciniak M (2004). Ind Eng Chem Res 43:7647–7656

    Article  CAS  Google Scholar 

  18. Weinhold F, Klein R (2014). Chem Educ Res Pract 15:276–285

    Article  CAS  Google Scholar 

  19. Jacobsen EN, Knowles RR (2010). Proc Natl Acad Sci 107:20678–20685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jacobsen EN, Taylor MS (2006). Ang Chem Int Edn 45:1521–1539

    Google Scholar 

  21. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  22. Azizian S, Bashavard N (2005). J Adv Colloid Interface Sci. 286:349–354

    Article  CAS  Google Scholar 

  23. Maham Y, Boivineau M, Mather AE (2001). J Chem Thermodynamics 33:1725–1734

    Article  CAS  Google Scholar 

  24. Sharma S, Makavana M (2014). Fluid Phase Equilibria 375:219–227

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A02. Gaussian, Inc., Wallingford

    Google Scholar 

  26. Becke AD (1992). J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Alper TC, Thijs JHV, Othonas AM (2019). J Phys Chem B 123:11014–11025

    Article  CAS  Google Scholar 

  29. Weiner SJ, Kollman PA, Case DA (1984). J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  30. Cornell WD, Cieplak P, Bayly CI (1995). J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  31. Brooks BR, Bruccoleri RE, Olafson BD (1983). J comput Chem 4:187–217

    Article  CAS  Google Scholar 

  32. Jorgensen W, Maxwell D, Tirado J (1996). J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  33. Fonseca TL, Coutinho K, Canuto S (2010). Phys Chem Chem Phys 12:6660–6665

    Article  CAS  PubMed  Google Scholar 

  34. Kosztolányi T, Bakó I, Pálinkás G (2003). J Chem Phys 118:4546–4555

    Article  CAS  Google Scholar 

  35. Jorgensen WL (1986). J Phys Chem 90:1276–1284

    Article  CAS  Google Scholar 

  36. Gao J, Habibollazadeh D, Shao L (1995). J Phys Chem 99:16460–16467

    Article  CAS  Google Scholar 

  37. Guevara G, Nieto C, Vrabec J (2008). J Phys Chem B 112:16664–16674

    Article  CAS  Google Scholar 

  38. Jorgensen WL, Chandrasekhar J, Madura JD (1983). J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Madura JD, Swenson CJ (1984). J Am Chem Soc 106:6638–6646

    Article  CAS  Google Scholar 

  40. Briggs JM, Nguyen TB, Jorgensen WL (1991). J Phys Chem 95:3315–3322

    Article  CAS  Google Scholar 

  41. Leeuwen ME, Smit B (1995). J Phys Chem 99:1831–1833

    Article  Google Scholar 

  42. Rizzo RC, Jorgensen WL (1999). J Am Chem Soc 121:4827–4836

    Article  CAS  Google Scholar 

  43. Smith W, Forester T, Todorov I (2006) The DL poly 2 user manual. CCLRC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD

    Google Scholar 

  44. Ranjbar S, Soltanabadi A, Fakhri Z (2017). J Mol Liq 234:342–352

    Article  CAS  Google Scholar 

  45. Ranjbar S, Soltanabadi A, Fakhri FZ (2016). J. Chem. Eng. Data. 61:3077–3089

    Article  CAS  Google Scholar 

  46. Biegler F (2000) AIM2000 University of Applied Sciences, Bielefeld

  47. Carroll MT, Chang C, Bader RF (1988). Mol Phys 63:387–405

    Article  CAS  Google Scholar 

  48. Schmidt MW, Baldridge KK, Boatz JA (1993). J comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  49. Biegler F, Schonbohm J, Bayles D (2002). J Comput Chem 23:1489–1494

    Article  CAS  Google Scholar 

  50. Alavi S, Shin K, Ripmeester JA (2015). J Chem Eng Data 69:389–397

    Article  CAS  Google Scholar 

  51. Bondi A (1964). J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  52. Brehm M, Kirchner B (2011) TRAVIS-a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. ACS Publications

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research Council of Razi University for providing the necessary facilities for performing the research. Cluster computing times, provided in part by the High Performance Computing Research Laboratory of Institute for Research in Fundamental Sciences (IPM), are greatly acknowledged.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. A.S., R.M., and S.R. performed material preparation, data collection, and analysis. Z.F. wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Azim Soltanabadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies involving animals performed by any of the authors.

Consent to participate

This article does not contain any studies involving animals performed by any of the authors.

Consent to publish

All the authors mentioned in the manuscript have given consent for submission and subsequent publication of the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1.

The Compound Name, CAS Number, Molar Mass, Supplier and Purity of 2‒Methylcyclohexanol and Morpholine, Details force field, thermal expansion coefficient, α, and isothermal coefficient of pressure excess molar enthalpy, \( {\left(\partial {H}_{\mathrm{m}}^{\mathrm{E}}/\partial P\right)}_{T,{x}_1} \), and optimized coordinates are presented in the supplementary material. (DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee, R., Soltanabadi, A., Ranjbar, S. et al. The role of hydrogen bonds in thermodynamic and structural properties in binary mixtures of morpholine + 2-methylcyclohexanol: a combined experimental and computational study. Struct Chem 32, 2319–2332 (2021). https://doi.org/10.1007/s11224-021-01808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01808-9

Keywords

Navigation