Skip to main content

Advertisement

Log in

Water desalination across functionalized silicon carbide nanosheet membranes: insights from molecular simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Desalination of seawater can be an effective way to access drinking water. In this study, the performance of functionalized silicon carbide nanosheet (SiCNS) membranes for water desalination was investigated using molecular dynamics (MD) simulations. For this purpose, four types of membranes with various functionalized pores were considered to investigate their capabilities in water desalination. The chemical functions of fluorine (–F) (system S1), hydrogen (–H) (systems S2 and S3), and hydrogen (–H) and hydroxyl (–OH) (system S4) were bonded to the pore edge of the SiCNS membranes. Also, the effect of the number of pores in the membrane on the water permeability was studied between systems S2 and S3. The SiCNS membrane was placed at the center of the simulation box and the external pressure was applied to the system in the range of 10–100 MPa. The water permeability, salt rejection, potential of mean force of ions, water density, water density map, and radial distribution function (RDF) of water molecules were calculated in this work. The results demonstrated that the water permeability increases by adding hydrophilic chemical functions such as –F and –OH on the pore edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gao H, Shi Q, Rao D, Zhang Y, Su J, Liu Y, Wang Y, Deng K, Lu R (2017) Rational design and strain engineering of nanoporous boron nitride nanosheet membranes for water desalination. J Phys Chem C 121(40):22105–22113. https://doi.org/10.1021/acs.jpcc.7b06480

    Article  CAS  Google Scholar 

  2. Garnier L, Szymczyk A, Malfreyt P, Ghoufi A (2016) Physics behind water transport through nanoporous boron nitride and graphene. J Phys Chem Lett 7(17):3371–3376

    Article  CAS  Google Scholar 

  3. Konatham D, Yu J, Ho TA, Striolo A (2013) Simulation insights for graphene-based water desalination membranes. Langmuir 29(38):11884–11897

    Article  CAS  Google Scholar 

  4. Devanathan R, Chase-Woods D, Shin Y, Gotthold DW (2016) Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow. Sci Rep 6:29484

    Article  Google Scholar 

  5. Shahbabaei M, Kim D (2017) Molecular dynamics simulation of water transport mechanisms through nanoporous boron nitride and graphene multilayers. J Phys Chem B 121(16):4137–4144

    Article  CAS  Google Scholar 

  6. Cohen-Tanugi D, Grossman JC (2014) Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett 14(11):6171–6178. https://doi.org/10.1021/nl502399y

    Article  CAS  PubMed  Google Scholar 

  7. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602–3608

    Article  CAS  Google Scholar 

  8. Heiranian M, Farimani AB, Aluru NR (2015) Water desalination with a single-layer MoS2 nanopore. Nat Commun 6:8616

    Article  CAS  Google Scholar 

  9. Xue M, Qiu H, Guo W (2013) Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24(50):505720

    Article  Google Scholar 

  10. Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM, Dai S, Mahurin SM (2015) Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 10(5):459–464

    Article  CAS  Google Scholar 

  11. Azamat J (2016) Functionalized graphene nanosheet as a membrane for water desalination using applied electric fields: insights from molecular dynamics simulations. J Phys Chem C 120(41):23883–23891

    Article  CAS  Google Scholar 

  12. Wang Y, He Z, Gupta KM, Shi Q, Lu R (2017) Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon 116:120–127

    Article  CAS  Google Scholar 

  13. Ebrahimi S (2016) Influence of curvature on water desalination through the graphene membrane with Si-passivated nanopore. Comput Mater Sci 124:160–165. https://doi.org/10.1016/j.commatsci.2016.07.036

    Article  CAS  Google Scholar 

  14. Cohen-Tanugi D, Lin L-C, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16(2):1027–1033. https://doi.org/10.1021/acs.nanolett.5b04089

    Article  CAS  PubMed  Google Scholar 

  15. Muscatello J, Jaeger F, Matar OK, Müller EA (2016) Optimizing water transport through graphene-based membranes: insights from nonequilibrium molecular dynamics. ACS Appl Mater Interfaces 8(19):12330–12336

    Article  CAS  Google Scholar 

  16. Kou J, Zhou X, Lu H, Wu F, Fan J (2014) Graphyne as the membrane for water desalination. Nanoscale 6(3):1865–1870

    Article  CAS  Google Scholar 

  17. Zhu C, Li H, Zeng XC, Wang E, Meng S (2013) Quantized water transport: ideal desalination through graphyne-4 membrane. Sci Rep 3:3163

    Article  Google Scholar 

  18. Li W, Yang Y, Weber JK, Zhang G, Zhou R (2016) Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano 10(2):1829–1835

    Article  CAS  Google Scholar 

  19. Yang Y, Li W, Zhou H, Zhang X, Zhao M (2016) Tunable C2N membrane for high efficient water desalination. Sci Rep 6:29218

    Article  CAS  Google Scholar 

  20. Liu Y, Xie D, Song M, Jiang L, Fu G, Liu L, Li J (2018) Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon 140:131–138

    Article  Google Scholar 

  21. Azamat J (2019) Selective separation of methanol-water mixture using functionalized boron nitride nanosheet membrane: a computer simulation study. Struct Chem 30(4):1451–1457. https://doi.org/10.1007/s11224-019-01300-5

    Article  CAS  Google Scholar 

  22. Zhang X, Gai J-G (2015) Single-layer graphyne membranes for super-excellent brine separation in forward osmosis. RSC Adv 5(83):68109–68116. https://doi.org/10.1039/C5RA09512C

    Article  CAS  Google Scholar 

  23. Jafarzadeh R, Azamat J, Erfan-Niya H (2019) Molecular dynamics study for CH4/H2S separation through functionalized nanoporous graphyne membrane. Pet Sci Technol 37(19):2043–2048. https://doi.org/10.1080/10916466.2018.1482321

    Article  CAS  Google Scholar 

  24. Hosseini M, Azamat J, Erfan-Niya H (2019) Water desalination through fluorine-functionalized nanoporous graphene oxide membranes. Mater Chem Phys 223:277–286. https://doi.org/10.1016/j.matchemphys.2018.10.063

    Article  CAS  Google Scholar 

  25. Chen B, Jiang H, Liu X, Hu X (2017) Molecular insight into water desalination across multilayer graphene oxide membranes. ACS Appl Mater Interfaces 9(27):22826–22836

    Article  CAS  Google Scholar 

  26. Hosseini M, Azamat J, Erfan-Niya H (2018) Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane. Appl Surf Sci 427:1000–1008

    Article  CAS  Google Scholar 

  27. Ansari P, Azamat J, Khataee A (2019) Separation of perchlorates from aqueous solution using functionalized graphene oxide nanosheets: a computational study. J Mater Sci 54(3):2289–2299. https://doi.org/10.1007/s10853-018-3045-2

    Article  CAS  Google Scholar 

  28. Huda MN, Yan Y, Al-Jassim MM (2009) On the existence of Si–C double bonded graphene-like layers. Chem Phys Lett 479(4):255–258

    Article  CAS  Google Scholar 

  29. Sahimi M, Tsotsis TT (2011) Preparation, characterization, and modeling of nanoporous silicon carbide membranes

  30. Ansari R, Rouhi S, Mirnezhad M, Aryayi M (2013) Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression. Phys E 53:22–28

    Article  CAS  Google Scholar 

  31. Khataee A, Bayat G, Azamat J (2017) Molecular dynamics simulation of salt rejection through silicon carbide nanotubes as a nanostructure membrane. J Mol Graphics Modell 71:176–183. https://doi.org/10.1016/j.jmgm.2016.11.017

    Article  CAS  Google Scholar 

  32. Khataee A, Azamat J, Bayat G (2016) Separation of nitrate ion from water using silicon carbide nanotubes as a membrane: insights from molecular dynamics simulation. Comput Mater Sci 119:74–81

    Article  CAS  Google Scholar 

  33. Azamat J, Khataee A (2018) Separation of CH4/C2H6 mixture using functionalized nanoporous silicon carbide nanosheet. Energy Fuel 32(7):7508–7518. https://doi.org/10.1021/acs.energyfuels.8b01433

    Article  CAS  Google Scholar 

  34. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  35. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  Google Scholar 

  36. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  38. Azamat J, Sattary BS, Khataee A, Joo SW (2015) Removal of a hazardous heavy metal from aqueous solution using functionalized graphene and boron nitride nanosheets: insights from simulations. J Mol Graphics Modell 61:13–20

    Article  CAS  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  40. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  41. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91(1–3):275–282. https://doi.org/10.1016/0010-4655(95)00053-I

    Article  CAS  Google Scholar 

  42. Jafarzadeh R, Azamat J, Erfan-Niya H (2018) Fluorine-functionalized nanoporous graphene as an effective membrane for water desalination. Struct Chem 29(6):1845–1852

    Article  CAS  Google Scholar 

  43. Jafarzadeh R, Azamat J, Erfan-Niya H, Hosseini M (2019) Molecular insights into effective water desalination through functionalized nanoporous boron nitride nanosheet membranes. Appl Surf Sci 471:921–928. https://doi.org/10.1016/j.apsusc.2018.12.069

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Erfan-Niya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarzadeh, R., Azamat, J. & Erfan-Niya, H. Water desalination across functionalized silicon carbide nanosheet membranes: insights from molecular simulations. Struct Chem 31, 293–303 (2020). https://doi.org/10.1007/s11224-019-01405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01405-x

Keywords

Navigation