Skip to main content
Log in

Molecular insights on analogs of imidazo[1,2-a]pyridine, azaindole, and pyridylurea towards ParE using pharmacophore modeling, molecular docking, and dynamic simulation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Topoisomerase IV E (ParE) of Streptococcus pneumonia, a subunit of topoisomerase IV, ensures the regulation of DNA topology and demonstrated to be a bactericidal drug target. Availability of crystal structure of S. pneumonia ParE in complex with one of the thiazolo[5,4-b]pyridinones facilitated us to employ combined computational approach to explore the putative binding mode of selected inhibitors into the catalytic pocket of ParE. We developed a five-point pharmacophore model using 67 molecules having pIC50 ranging from 4.795 to 8.522. The generated model was validated using enrichment calculations. The three-dimensional quantitative structure–activity relationship (3D-QSAR) model showed a high correlation coefficient (R 2 = 0.892), cross-validation coefficient (Q 2 = 0.744), and F value (119) at three component partial least squares (PLS) factor. Using the crystallographic bound compound, the effectiveness of the flexible docking protocol was validated as evident from the low root mean square deviation (0.96 Å). A 10-ns molecular dynamic simulation confirmed the stability of the 4MOT-ligand complex. Further, superposition of conformation of compound 45 after MD simulation and compound 45’s poses of XP-docking and 3D-QSAR model showed similar orientation. The molecular information obtained from docking and 3D-QSAR analysis was employed to propose new inhibitors. These findings provide insight for the design of molecules with better ParE inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ventola CL (2015) The antibiotic resistance crisis: part 1. Causes and threats 40:277–283

    Google Scholar 

  2. Heisig P (2001) Inhibitors of bacterial topoisomerases: mechanisms of action and resistance and clinical aspects. Planta Med 67:3–12

    Article  CAS  Google Scholar 

  3. Maxwell A, Lawson DM (2003) The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem 3:283–303

    Article  CAS  Google Scholar 

  4. Zechiedrich EL, Khodrusky AB, Bachellier S, Schneider R, Chen D, Lilley DMJ, Cozzarelli NR (2000) Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem 11:8103–8113

    Article  Google Scholar 

  5. Kato JI, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H (1990) New topoisomerases essential for chromosome segregation in E. coli. Cell 63:393–404

    Article  CAS  Google Scholar 

  6. Bellon S, Parsons JD, Wei Y, Hayakawa K, Swenson LL, Charifson PS, Lippke JA, Aldape R, Gross CH (2004) Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase. Antimicrob Agents Chemother 48:1856–1864

    Article  CAS  Google Scholar 

  7. Sifaoui F, Lamour V, Emmanuelle VE, Moras D, Gutmann L (2003) ATP-bound conformation of topoiomerase IV: a possible target for quinolones in Streptococcus pneumonia. J Bacteriol 185:6137–6146

    Article  CAS  Google Scholar 

  8. Pan XS, Fisher LM (1999) Streptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones. Antimicrob Agents Chemother 43:1129–1136

    CAS  Google Scholar 

  9. Fernandez-Moreira E, Balas D, Gonzalez I, de la Campa AG (2000) Fluoroquinolones inhibit preferentially Streptococcus pneumoniae DNA topoisomerase IV than DNA gyrase native proteins. Microb Drug Resist 6:259–267

    Article  CAS  Google Scholar 

  10. Janoir C, Zeller V, Kitzis MD, Moreau NJ, Gutmann L (1996) High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother 40:2760–2764

    CAS  Google Scholar 

  11. Munoz R, Bustamante M, de la Campa AG (1995) Ser-127-to-Leu substitution in the DNA gyrase B subunit of Streptococcus pneumoniae is implicated in novobiocin resistance. J Bacteriol 177:4166–4170

    Article  CAS  Google Scholar 

  12. Dupont P, Aubry A, Cambau E, Gutmann L (2005) Contribution of the ATP binding site of ParE to susceptibility to novobiocin and quinolones in Streptococcus pneumoniae. J Bacteriol 187:1536–1540

    Article  CAS  Google Scholar 

  13. Brino L, Urzhumtsev A, Mousli M, Bronner C, Mitschler A, Oudet P, Moras D (2000) Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J Biol Chem 275:9468–9475

    Article  CAS  Google Scholar 

  14. Laponogov I, Veselkov DA, Crevel IMT, Pan XU, Fisher LM, Sanderson MR (2013) Structure of an ‘open’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res 41:9911–9923

    Article  CAS  Google Scholar 

  15. Janoir C, Varon E, Kitzis MD, Gutmann L (2001) New mutation in ParE in a pneumococcal in vitro mutant resistant to fluoroquinolones. Antimicrob Agents Chemother 45:952–955

    Article  CAS  Google Scholar 

  16. Starr JT, Sciotti RJ, Hanna DL, Huband MD, Mullins LM, Cai H, Gage JW, Lockard M, Rauckhorst MR, Owen RM, Lall MS, Tomilo M, Chen H, McCurdy SP, Barbachyn MR (2009) 5-(2-Pyrimidinyl)-imidazo[1,2-a]pyridines are antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 19:5302–5306

    Article  CAS  Google Scholar 

  17. Tari LW, Trzoss M, Bensen DC, Li X, Chen Z, Lam T, Zhang J, Creighton CJ, Cunningham ML, Kwan B, Stidham M, Shaw KJ, Lightstone FC, Wong SE, Nguyen TB, Nix J, Finn J (2013) Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE). Part I: structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity. Bioorg Med Chem Lett 23:1529–1536

    Article  CAS  Google Scholar 

  18. Manchester JI, Dussault DD, Rose JA, Boriack-Sjodin PA, Uria-Nickelsen M, Ioannidis G, Bist S, Fleming P, Hull KG (2012) Discovery of a novel azaindole class of antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorg Med Chem Lett 22:5150–5156

    Article  CAS  Google Scholar 

  19. Uria-Nickelsen M, Neckermann G, Sriram S, Andrews B, Manchester JI, Carcanague D, Stokes S, Hull KG (2013) Novel topoisomerase inhibitors: microbiological characterisation and in vivo efficacy of pyrimidines. Int J Antimicrob Agents 41:363–371

    Article  CAS  Google Scholar 

  20. Pan XS, Gould KA, Fisher LM (2009) Probing the differential interactions of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV. Antimicrob Agents Chemother 53:3822–3831

    Article  CAS  Google Scholar 

  21. Huband MD, Cohen MA, Zurack M, Hanna DL, Skerlos LA, Sulavik MC, Gibson GW, Gage JW, Ellsworth E, Stier MA, Gracheck SJ (2007) In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant gram-positive and fastidious organism groups. Antimicrob Agents Chemother 51:1191–1201

    Article  CAS  Google Scholar 

  22. Jeverica S, Golparian D, Hanzelka B, Fowlie AJ, Maticic M, Unemo M (2014) High in vitro activity of a novel dual bacterial topoisomerase inhibitor of the ATPase activities of GyrB and ParE (VT12-008911) against Neisseria gonorrhoeae isolates with various high-level antimicrobial resistance and multidrug resistance. J Antimicrob Chemother 69:1866–1872

    Article  CAS  Google Scholar 

  23. Jones ME, Critchley IA, Karlowsky JA, Blosser-Middleton RS, Schmitz FJ, Thornsberry C, Sahm DF (2002) In vitro activities of novel nonfluorinated quinolones PGE 9262932 and PGE 9509924 against clinical isolates of Staphylococcus aureus and Streptococcus pneumoniae with defined mutations in DNA gyrase and topoisomerase IV. Antimicrob Agents Chemother 46:1651–1657

    Article  CAS  Google Scholar 

  24. Charifson PS, Grillot AL, Grossma TH, Parsons JD, Badia M, Bellon S, Deininger DD, Drumm JE, Gross CH, LeTiran A, Liao Y, Mani N, Nicolau DP, Perola E, Ronkin S, Shannon D, Swenson LL, Tang Q, Tessier PR, Tian SK, Trudeau M, Wang T, Wei Y, Zhang H, Stamos D (2008) Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: intelligent design and evolution through the judicious use of structure-guided design and structure-activity relationships. J Med Chem 51:5243–5263

    Article  CAS  Google Scholar 

  25. East SP, White CB, Barker O, Barker S, Bennett J, Brown D, Boyd EA, Brennan C, Chowdhury C, Collins I, Convers-Reignier E, Dymock BW, Fletcher R, Haydon DJ, Gardiner M, Hatcher S, Ingram P, Lancett P, Mortenson P, Papadopoulos K, Smee C, Thomaides-Brears HB, Tye H, Workman J, Czaplewski LG (2009) DNA gyrase (GyrB)/ topoisomerase IV (ParE) inhibitors: synthesis and antibacterial activity. Bioorg Med Chem Lett 19:894–899

    Article  CAS  Google Scholar 

  26. Palmer JT, Axford LC, Barker S, Bennett JM, Blair M, Collins I, Davies DT, Ford L, Gannon CT, Lancett P, Logan A, Lunniss CJ, Morton CJ, Offermann DA, Pitt GR, Rao BN, Singh AK, Shukla T, Srivastava A, Stokes NR, Thomaides-Brears HB, Yadav A, Haydon DJ (2014) Discovery and in vivo evaluation of alcohol-containing benzothiazoles as potent dual-targeting bacterial DNA supercoiling inhibitors. Bioorg Med Chem Lett 24:4215–4222

    Article  CAS  Google Scholar 

  27. Trzoss M, Bensen DC, Li X, Chen Z, Lam T, Zhang J, Creighton CJ, Cunningham ML, Kwan B, Stidham M, Nelson K, Brown-Driver V, Castellano A, Shaw KJ, Lightstone FC, Wong SE, Nguyen TB, Finn J, Tari LW (2013) Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE), part II: development of inhibitors with broad spectrum, Gram-negative antibacterial activity. Bioorg Med Chem Lett 23:1537–1543

    Article  CAS  Google Scholar 

  28. Tari LW, Li X, Trzoss M, Bensen DC, Chen Z, Lam T, Zhang J, Lee SJ, Hough G, Phillipson D, Akers-Rodriguez S, Cunningham ML, Kwan BP, Nelson KJ, Castellano A, Locke JB, Brown-Driver V, Murphy TM, Ong VS, Pillar CM, Shinabarger DL, Nix J, Lightstone FC, Wong SE, Nguyen TB, Shaw KJ, Finn J (2013) Tricyclic GyrB/ParE (TriBE) inhibitors: a new class of broad-spectrum dual-targeting antibacterial agents. PLoS One 8:e84409

    Article  Google Scholar 

  29. Basarab GS, Manchester JI, Bist SP, Boriack-Sjodin A, Dangel B, Illingworth R, Sherer BA, Sriram S, Uria-Nickelsen M, Eakin AE (2013) Fragment-to-hit-to-lead discovery of a novel pyridylurea scaffold of ATP competitive dual targeting type II topoisomerase inhibiting antibacterial agents. J Med Chem 56:8712–8735

    Article  CAS  Google Scholar 

  30. Kale RR, Kale MG, Waterson D, Raichurkar A, Hameed SP, Manjunatha MR, Kishore Reddy BK, Malolanarasimhan K, Shinde V, Koushik K, Jena LK, Menasinakai S, Humnabadkar V, Madhavapeddi P, Basavarajappa H, Sharma S, Nandishaiah R, Mahesh Kumar KN, Ganguly S, Ahuja V, Gaonkar S, Naveen Kumar CN, Ogg D, Boriack-Sjodin PA, Sambandamurthy VK, de Sousa SM, Ghorpade SR (2014) Thiazolopyridone ureas as DNA gyrase B inhibitors: optimization of antitubercular activity and efficacy. Bioorg Med Chem Lett 24:870–879

    Article  CAS  Google Scholar 

  31. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theo Comput 12:281–296

    Article  CAS  Google Scholar 

  32. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  Google Scholar 

  33. Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50:534–546

    Article  CAS  Google Scholar 

  34. Kirchmair J, Mark P, Distinto S, Wolber G, Langer T (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments and decoy selection-what can we learn from earlier mistakes? J Comput Aided Mol Des 22:213–228

    Article  CAS  Google Scholar 

  35. Sheridan RP, Singh SB, Fluder EM, Kearsley SK (2001) Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J Chem Inf Comput Sci 41:1395–1406

    Article  CAS  Google Scholar 

  36. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  Google Scholar 

  37. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RAA (2004) Hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367

    Article  CAS  Google Scholar 

  38. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  39. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins 79:2794–2812

    Article  CAS  Google Scholar 

  40. Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G (2010) Probing the α-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des 75:348–359

    Article  CAS  Google Scholar 

  41. Jorgensen WL, Madura JD (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys 56:1381–1392

    Article  CAS  Google Scholar 

  42. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Amn Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  43. Lawrence CP, Skinner JL (2003) Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem Phys Lett 372:842–847

    Article  CAS  Google Scholar 

  44. Essmann U, Perera L, Berkowit ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  45. Martyna GJ, Klein ML, Tuckerman M (1992) Nose-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643

    Article  Google Scholar 

  46. Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Indian Council of Medical Research (ICMR), Government of India for the financial support (No. 45/66/2013/PHA/BMS). The authors acknowledge Schrödinger, LLC Bangalore, India for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Afzal Azam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 3362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, M.A., Thathan, J. & Tripuraneni, N.S. Molecular insights on analogs of imidazo[1,2-a]pyridine, azaindole, and pyridylurea towards ParE using pharmacophore modeling, molecular docking, and dynamic simulation. Struct Chem 28, 1187–1200 (2017). https://doi.org/10.1007/s11224-017-0919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0919-x

Keywords

Navigation