Skip to main content
Log in

The role of cesium fluoride in aryl propargyl ether Claisen rearrangement and its mechanistic elucidation: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The role of cesium fluoride (CsF) in aryl propargyl ether Claisen rearrangement and its mechanistic pathway have been investigated in gas and solvent phase using the density functional theory implemented in Gaussian 09. Our results indicate that the [3,3]-sigmatropic rearrangement is the rate-limiting step with ΔG value of 37.1 kcal/mol in solvent phase. Furthermore, the results show that the enolization of α-allenylketone intermediate (Int1-CsF) has a higher free energy barrier, which implies that the formation of benzopyran is not favored in the presence of CsF. However, the abstraction of the α-hydrogen atom in Int1-CsF with CsF shows a very low free energy barrier and is the most favored pathway for aryl propargyl ether Claisen rearrangement in the presence of CsF to form benzofuran. In the case of substituted aryl propargyl ethers, a methoxy group on the benzene ring lowers the activation barrier. The HOMO–LUMO, conformational and NBO analysis indicate that increasing methyl substitution on the propargyl residue enhances the rearrangement reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ziegler FE (1988) The thermal, aliphatic Claisen rearrangement. Chem Rev 88:1423–1452

    Article  CAS  Google Scholar 

  2. Castro AMM (2004) Claisen rearrangement over the past nine decades. Chem Rev 104:2939–3002

    Article  CAS  Google Scholar 

  3. Ichikawa H, Maruoka K (2007) Aliphatic Claisen rearrangement. In: Hiersemann M, Nubbemeyer U (eds) The Claisen rearrangement: methods and applications. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  4. Ito H, Taguchi T (2007) Aromatic Claisen rearrangement. In: Hiersemann M, Nubbemeyer U (eds) The Claisen rearrangement: methods and applications. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim

    Google Scholar 

  5. Keay BA, Dibble PW (1996) In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II. Pergamon, New York

    Google Scholar 

  6. Katritzky AR, Kirichenko K, Ji Y, Steel PJ, Karelson M (2003) Syntheses of 3-hydroxymethyl-2,3-dihydrobenzofurans and 3-hydroxymethylbenzofurans. ARKIVOC 6:49–61

    Google Scholar 

  7. Ward RS (1997) Lignans, neolignans and related compounds. Nat Prod Rep 14:43–74

    Article  CAS  Google Scholar 

  8. Carola K, Kristina JS, Inga K, Karsten S, Daniel A, Ulrich B, Eckart E (2002) Andirol A and B, two unique 6-hydroxymethylpterocarpenes from Andira inemis. Z Naturforsch 57c:785–790

    Google Scholar 

  9. McCallion GD (1999) Benzo[b]furans: an investigation into natural products, bioactivity, and synthesis. Curr Org Chem 3:67–76

    CAS  Google Scholar 

  10. Csekei M, Novak Z, Timari G, Kotschy A (2004) The ‘one pot’ synthesis of substituted benzofurans. ARKIVOC 7:285–291

    Google Scholar 

  11. Herndon JW, Zhang Y, Wang H, Wang K (2000) Synthesis of benzofuran derivatives through the coupling of conjugated dienynes with Fischer carbene complexes. Tetrahedron Lett 41:8687–8690

    Article  CAS  Google Scholar 

  12. Chaplin JH, Flynn BL (2001) A multi-component coupling approach to benzo[b]furans and indoles. Chem Commun 17:1594–1595

    Article  Google Scholar 

  13. Miyata O, Takeda N, Naito T (2004) Highly effective synthetic methods for substituted 2-arylbenzofurans using [3,3]-sigmatropic rearrangement: short syntheses of stemofuran A and eupomatenoid 6. Org Lett 6:1761–1763

    Article  CAS  Google Scholar 

  14. Zhang H, Ferreira EM, Stoltz BM (2004) Direct oxidative heck cyclizations: intramolecular Fujiwara–Moritani arylations for the synthesis of functionalized benzofurans and dihydrobenzofurans. Angew Chem Int Ed 43:6144–6148

    Article  CAS  Google Scholar 

  15. Barton TJ, Groh BL (1985) Gas-phase thermal rearrangements of potential vinylidene precursors to silylbenzofurans and silylbenzopyrans. J Org Chem 50:158–166

    Article  CAS  Google Scholar 

  16. Villemin D, Goussu D (1989) Palladium homogeneous and supported catalysis: synthesis of functional acetylenics and cyclisation to heterocycles. Heterocycles 29:1255–1261

    Article  CAS  Google Scholar 

  17. Yue D, Larock RC (2002) Synthesis of 2,3-disubstituted benzo[b]thiophenes via palladium-catalyzed coupling and electrophilic cyclization of terminal acetylenes. J Org Chem 67:1905–1909

    Article  CAS  Google Scholar 

  18. Larock RC, Yum EK, Doty MJ, Sham KKC (1995) Synthesis of aromatic heterocycles via palladium-catalyzed annulation of internal alkynes. J Org Chem 60:3270–3271

    Article  CAS  Google Scholar 

  19. Hosokawa T, Maeda K, Koga K, Moritani I (1973) One step synthesis of 2-substituted benzofuran derivatives with dichlorobis(benzonitrile)palladium. Tetrahedron Lett 14:739–740

    Article  Google Scholar 

  20. Macleod JK, Worth BR (1972) Synthesis of benzofuranoid systems. I. Furocoumarins, benzofurans and dibenzofurans. Tetrahedron Lett 13:237–240

    Article  Google Scholar 

  21. Bender DR, Hearst JE, Rapoport H (1979) Psoralen synthesis. Improvements in Furano ring formation. application to the synthesis of 4,5′,8-trimethylpsoralen. J Org Chem 44:2176–2180

    Article  CAS  Google Scholar 

  22. Horaguchi T, Matsuda S, Tanemura K, Suzuki T (1987) Benzofuran derivatives part 3 [1]. On the reactivities of the intermediates in benzofuran synthesis. J Heterocycl Chem 24:965–969

    Article  CAS  Google Scholar 

  23. Rama Rao VVVNS, Reddy GV, Yadla R, Narsaiah B, Rao PS (2005) Synthesis of fluorine containing 3-cyano/ethoxycarbonyl-2-ethylbenzo[b]furans via microwave assisted tandem intramolecular Wittig and Claisen rearrangement reactions. ARKIVOC 3:211–220

    Google Scholar 

  24. Rhoads SJ, Raulins NR (1975) In: Dauben WG (ed) Organic reactions. Wiley, New York

    Google Scholar 

  25. Iwai I, Ide J (1962) Studies on acetylenic compounds. XXIII. A new ring closure of 2-propynyl ethers. Chem Pharm Bull 10:926–933

    Article  CAS  Google Scholar 

  26. Iwai I, Ide J (1963) Studies on acetylenic compounds. XXXII. Ring closure of propargyl ethers. Chem Pharm Bull 11:1042–1049

    Article  CAS  Google Scholar 

  27. Ishii H, Ishikawa T, Takeda S, Ueki S, Suzuki M (1992) Cesium fluoride-mediated Claisen rearrangement of aryl propargyl ether. Exclusive formation of 2-methylarylfuran and its availability as a masked salicylaldehyde. Chem Pharm Bull 40:1148–1153

    Article  CAS  Google Scholar 

  28. Lingam VSPR, Vinodkumar R, Mukkanti K, Thomas A, Gopalan B (2008) A simple approach to highly functionalized benzo[b]furans from phenols and aryl iodides via aryl propargyl ethers. Tetrahedron Lett 49:4260–4264

    Article  Google Scholar 

  29. Zsindely J, Schmid H (1968) Sigmatropische Umlagerungen von Aryl-propargyläthern; Synthese von 1,5-Dimethyl-6-methylen-tricyclo[3,2,1,02,7]-oct-3-en-8-on-Derivaten. Vorläuf Mitt Helv Chim Acta 51:1510–1514

    Article  CAS  Google Scholar 

  30. Srinivasandesikan V, Dai JK, Lee SL (2014) Quantum mechanistic insights on aryl propargyl ether Claisen rearrangement. Org Biomol Chem 12:4163–4171

    Article  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02 Gaussian, Inc., Wallingford

  32. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  33. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  35. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations—potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  37. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations—potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  38. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations—potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  39. Srivastava KK (1970) Dielectric relaxation study of some pure liquids. J Phys Chem 74:152–159

    Article  CAS  Google Scholar 

  40. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  41. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  42. Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque FJ (2009) On the performance of continuum solvation methods. A comment on “universal approaches to solvation modeling”. Acc Chem Res 42:489–492

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  45. NBO Version 3.1, Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899 − 926

  46. Clark JH (1980) Fluoride ion as a base in organic synthesis. Chem Rev 80:429–452

    Article  CAS  Google Scholar 

  47. Gomez B, Chattaraj PK, Chamorro E, Contreras R, Fuentealba P (2002) A density functional study of the Claisen rearrangement of allyl aryl ether, allyl arylamine, allyl aryl thio ether, and a series of meta-substituted molecules through reactivity and selectivity profiles. J Phys Chem A 106:11227–11233

    Article  CAS  Google Scholar 

  48. Ishikawa T, Nagai K, Ohkubo N, Ishii H (1994) Cesium fluoride-mediated Claisen rearrangements of phenyl propargyl ethers: effect of a substituent on the phenyl ring on the rearrangement. Heterocycles 39:371–380

    Article  CAS  Google Scholar 

  49. Ishikawa T, Mizutani A, Miwa C, Oku Y, Komano N, Takami A, Watanabe T (1997) Cesium fluoride-mediated Claisen rearrangements of phenyl propargyl ethers: substituent effects of an ortho-alkoxy group on the benzene ring or modified propargyl residues. Heterocycles 45:2261–2272

    Article  CAS  Google Scholar 

  50. Harfenist M, Thom E (1972) The influence of structure on the rate of thermal rearrangement of aryl propargyl ethers to the chromenes. The gem-dimethyl effect. J Org Chem 37:841–848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council (NSC) of Taiwan, and the computational resource was partially supported by the National Center for High-Performance Computing (NCHC), Hsinchu, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Long Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menkir, M.G., Srinivasadesikan, V. & Lee, SL. The role of cesium fluoride in aryl propargyl ether Claisen rearrangement and its mechanistic elucidation: a theoretical study. Struct Chem 27, 1383–1393 (2016). https://doi.org/10.1007/s11224-016-0758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0758-1

Keywords

Navigation