Skip to main content
Log in

A new hybrid (experimental–theoretical) quantitative method for detection of relative anomer concentrations in water

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel and inexpensive hybrid (combined experimental and theoretical) approach was used to quantitatively identify anomer proportions of d-glucose, d-galactose and d-mannose in water. The study involves three parts: recording of experimental FT-IR spectra of monosaccharides in water, calculation of vibrational frequencies of all stable anomers of monosaccharides and regression analysis of theoretical and experimental intensities. No expensive experimental processes and high-level calculations were needed during the study. The results were compared with the data from pure experimental and molecular dynamic studies. It has been concluded that in water while d-glucose and d-mannose have two stable anomers, α-pyranose and β-pyranose, d-galactose has four stable anomers, α-pyranose, β-pyranose, α-furanose and β-furanose. Comparison of detected results with the literature data showed that the developed method is working for the quantitative detection of anomer proportions of monosaccharides in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stern R, Jedrzejas MJ (2008) Chem Rev 108:5061–5085

    Article  CAS  Google Scholar 

  2. Ramesh HP, Tharanathan RN (2003) Crit Rev Biotechnol 23:149–173

    Article  CAS  Google Scholar 

  3. Wells L, Vosseller K, Hart GW (2001) Am Assoc Adv Sci 291:2376

    CAS  Google Scholar 

  4. Helenius A, Aebi M (2001) Am Assoc Adv Sci 291:2364

    CAS  Google Scholar 

  5. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Am Assoc Adv Sci 291:2370

    CAS  Google Scholar 

  6. Miura N, Taniguchi T, Monde K, Nishimura S (2006) Chem Phys Lett 419:326–332

    Article  CAS  Google Scholar 

  7. Kräutler V, Müller M, Hünenberger PH (2007) Carbohydr Res 342:2097–2124

    Article  Google Scholar 

  8. Robyt JF (1997) Essentials of carbohydrate chemistry. Springer, New York

    Google Scholar 

  9. Sameera WMC, Pantazis DA (2012) J Chem Theory Comput 8:2630–2645

    Article  CAS  Google Scholar 

  10. Rao VSR, Qasba PK, Balaji PV, Chandrasekaran R (1998) Conformation of carbohydrates. Harwood Academic Publishers, Amsterdam, p 409

    Google Scholar 

  11. Finch P (1999) Carbohydrates: structures, syntheses and dynamics. Kluwer Academic Publishers, Dordrecht, pp 258–293

    Google Scholar 

  12. Davis AP, Wareham RS (1999) Angew Chem Int Edit 38:2978–2996

    Article  Google Scholar 

  13. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Chem Rev 102:371–386

    Article  CAS  Google Scholar 

  14. Da Silva CO (2006) Theor Chem Acc 116:137–147

    Article  Google Scholar 

  15. Kirschner KN, Woods RJ (2001) Proc Natl Acad Sci 98:10541–10545

    Article  CAS  Google Scholar 

  16. Suzuki T, Kawashima H, Sota T (2006) J Phys Chem B 110:2405–2418

    Article  CAS  Google Scholar 

  17. Thibaudeau C, Stenutz R, Hertz B, Klepach T, Zhao S, Wu Q, Carmichael I, Serianni AS (2004) J Am Chem Soc 126:15668–15685

    Article  CAS  Google Scholar 

  18. Mason PE, Neilson GW, Enderby JE, Saboungi ML, Cuello G, Brady JW (2006) J Chem Phys 125:224505–224509

    Article  Google Scholar 

  19. Barnett CB, Naidoo KJ (2008) J Phys Chem B 112:15450–15459

    Article  CAS  Google Scholar 

  20. Zhu Y, Zajicek J, Serianni AS (2001) J Org Chem 66:6244–6251

    Article  CAS  Google Scholar 

  21. Angyal SJ (1991) Adv Carbohydr Chem Biochem 49:19–35

    Article  Google Scholar 

  22. Karabulut S, Namli H, Leszczynski J (2013) J Comput Aided Mol Des 27:681–688

    Article  CAS  Google Scholar 

  23. Galant AL, Kaufman RC, Wilson JD (2015) Food Chem 188:149–160

    Article  CAS  Google Scholar 

  24. Molteni C, Parrinello M (1998) J Am Chem Soc 120:2168–2171

    Article  CAS  Google Scholar 

  25. Andrade CA, Ruiz F, Mendoza JRM, Terrones H (2005) J Mol Struct THEOCHEM 714:143–146

    Article  Google Scholar 

  26. Guler LP, Yu YQ, Kenttämaa HI (2002) J Phys Chem A 106:6754–6764

    Article  CAS  Google Scholar 

  27. Karabulut S, Namli H, Mella M (2011) Vib Spectrosc 57:294–299

    Article  CAS  Google Scholar 

  28. Claramunt RM, Lopez C, Santa Maria MD, Sanz D, Elguero J (2014) Prog Nucl Magn Reson Spectrosc 74:1–5

    Google Scholar 

  29. Karabulut S, Namli H (2012) J Mol Struct 1024:151–155

    Article  CAS  Google Scholar 

  30. Kačuráková M, Wilson RH (2001) Carbohydr Polym 44:291–303

    Article  Google Scholar 

  31. Ibrahim M, Alaam M, El-Haes H, Jalbout AF, de Leon A (2006) Elètica Qímica 3:15–21

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D01. GaussianInc, Wallingford

    Google Scholar 

  33. Jensen F (1999) Introduction to computational chemistry. Wiley, London

    Google Scholar 

  34. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  35. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  36. Raczynska ED, Kosinska W (2005) Chem Rev 105:3561–3612

    Article  CAS  Google Scholar 

  37. Karabulut S, Leszczynski J (2013) J Mol Model 19:3637–3645

    Article  CAS  Google Scholar 

  38. Schnupf U, Willett JL, Momany F (2010) Carbohydr Res 345:503–511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by TUBITAK (The Scientific and Technological Council of Turkey) 2210-C program and BAP (Scientific Researches Department) of Balikesir University (Grant No: 2014/52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Karabulut.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabulut, S., Uysal, D. & Leszczynski, J. A new hybrid (experimental–theoretical) quantitative method for detection of relative anomer concentrations in water. Struct Chem 27, 449–455 (2016). https://doi.org/10.1007/s11224-015-0722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0722-5

Keywords

Navigation