Skip to main content
Log in

Theoretical study of anticancer properties of indolyl-oxazole drugs and their interactions with DNA base pairs in gas phase and solvent

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, the anticancer properties of a series of synthesized indolyl-oxazoles drugs 1–6 and their interactions with DNA base pairs were investigated. The quantum molecular descriptors (chemical potential, hardness, and electrophilicity) for studied drugs and their complexes with DNA base pairs were calculated. The reaction enthalpies (BDE and IP) of HAT and SET-PT mechanism of anticancer action of drugs 1–6 were calculated. Results reveal that interactions of indolyl-oxazole drugs with DNA base pairs are energetically favorable and solvent increase the binding energies in comparison with gas phase. The binding energies of drugs 4–6 DNA base pairs complexes are more negative than corresponding values for drugs 1–3. The obtained binding energy and reaction enthalpy (BDE and IP) trends for drugs 1–6 confirm pervious experimental anticancer activity trends. IC50 scale has been used as a benchmark for measuring the anticancer activity. Based on theoretical and published experimental scales, drugs 4, 5, and 6 have higher anticancer activity among drugs 1–6. Finally, according to the obtained results, drugs 7–10 can consider as novel drugs with higher anticancer activity than drug 1. Results show that binding energies of drugs 7–10 with DNA base pairs were more negative than corresponding values for drugs 1–6. The BDE and IP values of drugs 4–10 were lower than corresponding values of drug 1. For drugs 1–10, results indicated that the SET-PT and HAT mechanisms represent the thermodynamically preferred mechanism in solvent and gas phase, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

PW91:

Perdew–Wang 91

COSMO:

Conductor like screening model

B3LYP:

Becke, 3-parameter, Lee–Yang–Parr

DNA:

Deoxyribonucleic acid

WC:

Watson–Crick

A:

Adenine

T:

Thymine

G:

Guanine

C:

Cytosine

HB:

Hydrogen bond

E b :

Binding energy

BDE:

Bond dissociation enthalpy

IP:

Ionization potential

SET-PT:

Single electron transfer followed by proton transfer

HAT:

Hydrogen atom transfer

µ :

Chemical potential

η :

Hardness

ω :

Electrophilicity

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

References

  1. Wipf P (1995) Chem Rev 95:2115–2134

    CAS  Google Scholar 

  2. Lewis JR (1995) Nat Prod Res 12:135–163

    CAS  Google Scholar 

  3. Naik SR, Harindran J, Varde AB (2001) J Biotechnol 88:1–10

    CAS  Google Scholar 

  4. Kumar D, Sundaree S, Patel G, Rao VS (2008) Tetrahedron Lett 49:867–869

    CAS  Google Scholar 

  5. Nishida A, Fuwa M, Naruto S, Sugano Y, Saito H, Nakagawa M (2000) Tetrahedron Lett 41:4791–4794

    CAS  Google Scholar 

  6. Roy S, Haque S, Gribble GW (2006) Synthesis 3948–3954

  7. Pettit GR, Knight JC, Herald DL, Davenport R, Pettit RK, Tucker BE, Schmidt JM (2002) J Nat Prod 65:1793–1797

    CAS  Google Scholar 

  8. Moody CJ, Roffey JRA, Stephens MA, Stratford IJ (1997) Anticancer Drugs 8(489–4):99

    Google Scholar 

  9. Glawischnig E (2007) Phytochemistry 68:401–406

    CAS  Google Scholar 

  10. Oka H, Yoshinari T, Murai T, Kawamura K, Satoh F, Funaishi K, Okura A, Suda H, Okanishi M, Shizuri Y (1991) J Antibiot 44:486–491

    CAS  Google Scholar 

  11. Garey D, Ramirez M, Gonzales S, Wertsching A, Tith S, Keefe K, Pen MR (1996) J Org Chem 61(4853–4):856

    Google Scholar 

  12. Matsunaga S, Fujita S, Sakata H, Fusetani N (1991) Tetrahedron 47:2999–3006

    CAS  Google Scholar 

  13. Iwasaki S, Kobayashi H, Furukawa J, Okuda S, Sato Z, Matsuda I, Noda T (1984) J Antibiot 37:354–362

    CAS  Google Scholar 

  14. Yoo SK (1992) Tetrahedron Lett 33:2159–2162

    CAS  Google Scholar 

  15. Connell R, Scavo F, Helquist P, Akermark B (1986) Tetrahedron Lett 27:5559–5562

    CAS  Google Scholar 

  16. Friedman BS, Sparks M, Adams R (1937) J Am Chem Soc 59:2262–2264

    CAS  Google Scholar 

  17. Zhao Z, Scarlato GR, Armstrong RW (1991) Tetrahedron Lett 32:1609–1612

    CAS  Google Scholar 

  18. Chudasama V, Wilden JD (2008) Chem Commun 32:3768–3770

    Google Scholar 

  19. Kumar D, Sundaree S, Johnson EO, Shah K (2009) Bioorg Med Chem Lett 19(4):492–494

    Google Scholar 

  20. Koser GF (2001) Aldrichimica Acta 34:89–90

    CAS  Google Scholar 

  21. Moriarty RM, Vaid RK, Koser GF (1990) Synlett 1:365–383

    Google Scholar 

  22. Tanaka K, Toda F (2000) Chem Rev 100:1025–1074

    CAS  Google Scholar 

  23. Kumar D, Kumar NM, Sundaree S, Johnson EO, Shah K (2010) Eur J Med Chem 45:1244–1249

    CAS  Google Scholar 

  24. Wright JS, Johnson ER, Dilabio GA (2001) J Am Chem Soc 123:1173–1183

    CAS  Google Scholar 

  25. Vafiadis AP, Bakalbassis EG (2005) Chem Phys 316:195–204

    CAS  Google Scholar 

  26. Musialik M, Litwinienko G (2005) Org Lett 7:4951–4954

    CAS  Google Scholar 

  27. Zhang HY, Ji HF (2003) J Mol Struct 663:167–174

    CAS  Google Scholar 

  28. Becke AD (1993) Chem Phys 98:5648–5662

    CAS  Google Scholar 

  29. Becke AD (1988) Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Google Scholar 

  31. Davidson ER, Feller D (1986) Chem Rev 86:681–696

    CAS  Google Scholar 

  32. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  33. Perdew JP (1986) Phys Rev B 33:8822–8824

    Google Scholar 

  34. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    CAS  Google Scholar 

  35. Weinhold F, Carpenter J (1989) Springer, New York, pp 227–236

  36. Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) J Phys Chem A 102:5074–5085

    CAS  Google Scholar 

  37. Klamt A, Eckert F (2000) Fluid Phase Equilib 172:43–72

    CAS  Google Scholar 

  38. Mehler C, Klamt A, Peukert W (2002) AIChE J 48:1093–1099

    CAS  Google Scholar 

  39. Klamt A, Eckert F, Hornig M (2001) J Comput Aided Mol Des 15:355–365

    CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  41. Watson JD, Crick FHC (1953) Nature 171:737–738

    CAS  Google Scholar 

  42. Brenner S, Jacob F, Meselson M (1961) Nature 190:576–581

    CAS  Google Scholar 

  43. Guerra CF, Bickelhaupt FM, Snijders JG, Baerends EJ (1999) Chem A Eur J 5:3581–3594

    CAS  Google Scholar 

  44. Hobza P, Sponer J (1999) Chem Rev 99:3247–3276

    CAS  Google Scholar 

  45. Hobza P, Zahradnik R, Mueller-Dethlefs K (2006) Chem Commun 71:443–531

    CAS  Google Scholar 

  46. Shishkin OV, Sponer J, Hobza P (1999) J Mol Struct 477:15–21

    CAS  Google Scholar 

  47. Meng F, Liu C, Xu W (2003) Chem Phys Lett 373:72–78

    CAS  Google Scholar 

  48. Kawahara SI, Kobori A, Sekine M, Uchimaru T (2001) J Phys Chem A 105:10596–10601

    CAS  Google Scholar 

  49. Fonseca Guerra C, Bickelhaupt FM, Snijders JG, Baerends EJ (2000) J Am Chem Soc 122:4117–4128

    Google Scholar 

  50. Destexhe A, Smets J, Adamowicz L, Maes G (1994) J Phys Chem 98:1506–1514

    CAS  Google Scholar 

  51. Gould IR, Kollman PA (1994) J Am Chem Soc 116:2493–2499

    CAS  Google Scholar 

  52. Kyogoku Y, Lord RC, Rich A (1967) Proc Natl Acad Sci USA 57:250–257

    CAS  Google Scholar 

  53. Kyogoku Y, Lord RC, Rich A (1969) Biochem Biophys Acta 179:10–17

    CAS  Google Scholar 

  54. Iwahashi H, Kyogoku Y (1977) J Am Chem Soc 99:7761–7765

    CAS  Google Scholar 

  55. Newmark RA, Cantor CR (1968) J Am Chem Soc 90:5010–5017

    CAS  Google Scholar 

  56. Petersen SB, Led JJ (1981) J Am Chem Soc 103:5308–5313

    CAS  Google Scholar 

  57. Pullman B, Claverie P, Caillet J (1996) Proc Natl Acad Sci USA 55:904–912

    Google Scholar 

  58. Kudritskaya ZG, Danilov VI (1976) J Theor Biol 59:303–318

    CAS  Google Scholar 

  59. Hobza P, Sandorfy C (1987) J Am Chem Soc 109:1302–1307

    CAS  Google Scholar 

  60. Aida M (1988) J Comput Chem 9:362–368

    CAS  Google Scholar 

  61. Danilov VI, Tolokh IS, Poltev VI, Malenkov GG (1984) FEBS Lett 167:245–248

    CAS  Google Scholar 

  62. Hobza P, Sponer J, Polasek M (1995) J Am Chem Soc 117:792–798

    CAS  Google Scholar 

  63. Sponer J, Hobza P (2000) J Phys Chem A 104:4592–4597

    CAS  Google Scholar 

  64. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    CAS  Google Scholar 

  65. Guerra CF, Bickelhaupt FM, Snijders JG, Baerends EJ (1999) Chem Eur J 5:3581–3594

    CAS  Google Scholar 

  66. Meyer M, Suhnel J (1997) J Biomol Struct Dyn 15:619–624

    CAS  Google Scholar 

  67. Alkorta I, Elguero J (1998) Chem Soc Rev 27:163–170

    CAS  Google Scholar 

  68. Emsley J (1980) Chem Soc Rev 9:91–124

    CAS  Google Scholar 

  69. Kaplan IG (1986) Theory of molecular interactions. Elsevier, Amsterdam

    Google Scholar 

  70. Desiraju GR (2002) Acc Chem Res 35:565–573

    CAS  Google Scholar 

  71. Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16126–16130

    CAS  Google Scholar 

  72. Aoiz FJ, Friedrich B, Herrero VJ, Sáez Rábanos V, Verdasco JE (1998) Chem Phys Lett 289:132–140

    CAS  Google Scholar 

  73. Karlberg GS, Rossmeisl J, Norskov JK (2007) Phys Chem Chem Phys 9:5158–5161

    CAS  Google Scholar 

  74. Parthasarathi R, Subramanian V, Chattaraj PK (2003) Chem Phys Lett 382:48–56

    CAS  Google Scholar 

  75. Kramer KH, Bernstein RB (1964) J Chem Phys 40:200–203

    CAS  Google Scholar 

  76. Brooks PR, Jones ME (1966) J Chem Phys 45:3449–3450

    CAS  Google Scholar 

  77. Chermette H (1999) J Comput Chem 20:129–154

    CAS  Google Scholar 

  78. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  79. Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103:1793–1873

    CAS  Google Scholar 

  80. Roy RK, Saha S (2010) Prog Chem Sect C 106:118–162

    CAS  Google Scholar 

  81. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3808

    CAS  Google Scholar 

  82. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  83. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  84. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091

    CAS  Google Scholar 

  85. Kanvah S, Schuster GB (2010) Supplementary material (ESI) for organic and biomolecular chemistry. The Royal Society of Chemistry

  86. Kanvah S, Schuster GB (2006) Pure Appl Chem 78:2297–2304

    CAS  Google Scholar 

  87. Kanvah S, Schuster GB (2005) Nucleic Acids Res 33:5133–5138

    CAS  Google Scholar 

  88. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Bioorg Med Chem 12:5533–5543

    CAS  Google Scholar 

  89. Mineura K, Fushimi S, Itoh Y, Kowada M (1987) Cell Biol Int Rep 11:797–802

    CAS  Google Scholar 

  90. Bizarro MM, Cabral BJC, dos Santos RMB, Simons JAM (1999) Pure Appl Chem 71:1249–1256

    CAS  Google Scholar 

  91. Parker VD (1992) J Am Chem Soc 114:7458–7462

    CAS  Google Scholar 

  92. Wilhelm E, Battino R, Wilcock RJ (1977) Chem Rev 77:219–262

    CAS  Google Scholar 

  93. Rimarcik J, Lukes V, Klein E, Ilcin M (2010) J Mol Struct (Theochem) 952:25–30

    CAS  Google Scholar 

  94. Brinck T, Haeberline M, Jonsson M (1997) J Am Chem Soc 119:4239–4244

    CAS  Google Scholar 

  95. Tomasi J, Persico M (1997) Chem Rev 94:2027–2094

    Google Scholar 

  96. Barone V, Cossi M, Tomasi J (1997) Chem Phys 107:3210–3221

    CAS  Google Scholar 

  97. Najafi M, Nazarparvar E, Haghighi Mood K, Zahedi M, Klein E (2011) Comput Theor Chem 965:114–122

    CAS  Google Scholar 

  98. Najafi M, Zahedi M, Klein E (2011) Comput Theor Chem 978:16–28

    CAS  Google Scholar 

  99. Najafi M, Haghighi Mood K, Zahedi M, Klein E (2011) Comput Theor Chem 969:1–12

    CAS  Google Scholar 

  100. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    CAS  Google Scholar 

  101. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    CAS  Google Scholar 

  102. Boes ES, Livotto PR, Stassen H (2006) Chem Phys 33:142–158

    Google Scholar 

  103. Klein E, Lukes V (2006) J Mol Struct: Theochem 767:43–50

    CAS  Google Scholar 

  104. Klein E, Lukes V, Cibulkova Z, Polovkova J (2006) J Mol Struct 758:149–159

    CAS  Google Scholar 

  105. Najafi M, Farmanzadeh D, Zahedi M, Klein E (2013) Acta Chim Slov 60:43–55

    CAS  Google Scholar 

  106. Sadasivam K, Kumaresan R (2011) Comput Theor Chem 963:227–235

    CAS  Google Scholar 

  107. Calliste CA, Kozlowski D, Duroux JL, Champavier Y, Chulia AJ, Trouillas P (2010) Food Chem 118:489–496

    CAS  Google Scholar 

  108. Fifen JJ, Nsangou M, Dhaouadi Z, Motapon O, Jaidane N (2011) Comput Theor Chem 966:232–243

    CAS  Google Scholar 

  109. Trouillas P, Marsal P, Svobodova A, lova JV, Gazak R, Hrbac J, Sedmera P, Kren V, Lazzaroni R, Duroux JL, Walterova D (2008) J Phys Chem A 112:1054–1063

    CAS  Google Scholar 

  110. Stepanic V, Troselj KG, Lucic B, Markovic Z, Amic D (2013) Food Chem 141:1562–1570

    CAS  Google Scholar 

  111. Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem A 108:4916–4922

    CAS  Google Scholar 

  112. Nam PC, Nguyen MT, Chandra AK (2006) J Phys Chem A 110:10904–10911

    CAS  Google Scholar 

  113. Mohajeri A, Asemani SS (2009) J Mol Struct 930:15–20

    CAS  Google Scholar 

  114. Klein E, Lukes V (2006) Chem Phys 330:515–525

    CAS  Google Scholar 

  115. Zhao F, Liu ZQ, Wu D (2008) Chem Phys Lipids 151:77–84

    CAS  Google Scholar 

  116. Bizarro MM, Cabral BJC, dos Santos RMB, Simons JAM (1999) Pure Appl Chem 71:1249–1256

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the University of Mazandaran for research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Farmanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farmanzadeh, D., Najafi, M. Theoretical study of anticancer properties of indolyl-oxazole drugs and their interactions with DNA base pairs in gas phase and solvent. Struct Chem 26, 831–844 (2015). https://doi.org/10.1007/s11224-014-0546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0546-8

Keywords

Navigation