Skip to main content

Advertisement

Log in

Phenol interaction with different nano-cages with and without an electric field: a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The adsorption properties of the phenol molecule (C6H5OH) upon the outer surfaces of C24, B12P12, B12N12, Al12N12, and Al12P12 were investigated using density functional theory calculations. Our calculations reveal that the phenol molecule can be chemisorbed on the sidewalls of Al12N12 and Al12P12 with adsorption energies of −1.03 and −0.76 eV, respectively. While the adsorption energy of C6H5OH on Al12N12 is typically more than that of Al12P12 cluster. We also considered the adsorption of the C6H5OH molecule under a strong electric field over Al12N12. The results indicate that Al12N12 has high sensitivity to the phenol molecule in the presence of an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wallace J (2005) Kirk-Othmer, encyclopedia of chemical technology, vol 18, 3rd edn. Wiley, New York, p 747

    Google Scholar 

  2. Budavari S (1996) The Merck Index: an encyclopedia of chemical, drugs, and biologicals. Merck, Whitehouse Station

    Google Scholar 

  3. Lin TM, Lee SS, Lai CS, Lin SD (2006) J Int Soc Burn Inj 32:517

    Article  Google Scholar 

  4. Warner MA, Harper JV (1985) Anesthesiology 62:366

    Article  CAS  Google Scholar 

  5. Hanscha C, McKarnsb SC, Smith CJ, Doolittle DJ (2000) Chem Biol Interact 127:61

    Article  Google Scholar 

  6. Oku T, Hirano T, Kuno M, Kusunose T, Niihare K, Suganuma K (2000) Mater Sci Eng B 74:217

    Google Scholar 

  7. Oku T, Nishiwaki A, Narita I (2004) Sci Technol Adv Mater 5:635

    Article  CAS  Google Scholar 

  8. Wang H (2010) Chin J Chem 28:1897

    Article  CAS  Google Scholar 

  9. Sabirov DS, Bulgakov RG (2011) Comput Theor Chem 963:185

    Article  CAS  Google Scholar 

  10. Zhao J-x, Gao B, Cai Q-h, Wang X-g, Wang X-z (2011) Theor Chem Acc 129:85

    Article  CAS  Google Scholar 

  11. Chakarova-Käck SD, Øyvind B, Schröder E, Lundqvist BI (2006) Phys Rev B 74:155402

    Article  Google Scholar 

  12. Delle Site L, Alavi A, Abrams CF (2003) Phys Rev B 67:193406

    Article  Google Scholar 

  13. Myers AK, Benziger JB (1989) Langmuir 5:1270

    Article  CAS  Google Scholar 

  14. Xu X, Friend CM (1989) J Phys Chem 93:8072

    Article  CAS  Google Scholar 

  15. Ihm H, White JM (2000) J Phys Chem B 104:6202

    Article  CAS  Google Scholar 

  16. Ghiringhelli LM, Caputo R, Delle Site L (2007) Phys Rev B 75:113403

    Article  Google Scholar 

  17. Beheshtian J, Bagheri Z, Kamfiroozi M (2011) Microelectron J 42:1400

    Article  CAS  Google Scholar 

  18. Ahmadi Phyghan A, Pashangpour M, Bagheri Z, Kamfiroozi M (2012) Physica E 44:1436

    Article  Google Scholar 

  19. Beheshtian J, Kamfiroozi M, Bagheri Z, Ahmadi (2012) Comput Mater Sci 54:115

    Article  CAS  Google Scholar 

  20. Beheshtian J, Peyghan AA, Bagheri Z (2012) Comput Mater Sci 62:71

    Article  CAS  Google Scholar 

  21. Beheshtian J, Ahmadi Peyghan A, Bagheri Z, Kamfiroozi M (2012) Struct Chem 23:1567

    Article  CAS  Google Scholar 

  22. Schmidt M, Baldridge K, Boatz J, Elbert S, Gordon M, Jensen J, Koseki S, Matsunaga N, Nguyen K, Su S, Windus T, Dupuis M (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  23. Beheshtian J, Baei MT, Ahmadi Peyghan A (2012) Surf Sci 606:981

    Article  CAS  Google Scholar 

  24. Farmanzadeh D, Amirazami A (2009) Acta Phys Chim Sin 25:001

    Google Scholar 

  25. Farmanzadeh D, Ghazanfary S (2009) Struct Chem 20:709

    Article  CAS  Google Scholar 

  26. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  27. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  28. Soltani A, Taghartapeh MR, Mighani H, Pahlevani AA, Mashkoor R (2012) Appl Surf Sci 259:637

    Article  CAS  Google Scholar 

  29. Soltani A, Ahmadian N, Kanani Y, Dehno khalajid A, Mighani H (2012) Appl Surf Sci 258:9536

    Article  CAS  Google Scholar 

  30. Baei MT, Ahmadi Peyghan A, Bagheri Z (2013) Solid State Commun 159:8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Jaber Ebne Hayyan Unique Industry researchers Company. We should also thank the Nanotechnology Working Group of Young Researchers and Elite Club of Islamic Azad University, Gorgan Branch, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Soltani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, A., Baei, M.T., Taghartapeh, M.R. et al. Phenol interaction with different nano-cages with and without an electric field: a DFT study. Struct Chem 26, 685–693 (2015). https://doi.org/10.1007/s11224-014-0504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0504-5

Keywords

Navigation