Skip to main content
Log in

Mechanism and kinetics of low-temperature oxidation of a biodiesel surrogate−methyl acetate radicals with molecular oxygen

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Accurate description of reactions between methyl acetate (MA) radicals and molecular oxygen is an essential prerequisite for understanding as well as modeling low-temperature oxidation and/or ignition of MA, a small biodiesel surrogate, because their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The accurate composite CBS-QB3 level of theory was used to explore potential energy surfaces for MA radicals + O2 system. Using the electronic structure calculation results under the framework of canonical statistical mechanics and transition state theory, thermodynamic properties of all species as well as high-pressure rate constants of all reaction channels were derived with explicit corrections for tunneling and hindered internal rotations. Our calculated results are in good agreement with a limited number of scattered data in the literature. Furthermore, pressure- and temperature-dependent rate constants were then computed using the Quantum Rice–Ramsperger–Kassel and the modified strong collision theories. This procedure resulted in a thermodynamically consistent detailed kinetic mechanism for low-temperature oxidation of the title fuel. We also demonstrated that even the detailed mechanism consists of several reactions of different reaction types, only the addition of the reactants and the re-dissociation of the initially formed adducts are important for low-temperature combustion at engine-liked conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Demirbas A (2005) Prog Energy Combust Sci 31(5–6):466–487

    Article  CAS  Google Scholar 

  2. Mueller CJ, Boehman AL, Martin GC (2009) SAE Int J Fuels Lubr 2(1):789–816

  3. Rajan K, Kumar KRS (2009) Jordan J Mech Ind Eng 3:306–311

    Google Scholar 

  4. Ng J-H, Ng HK, Gan S (2011) Fuel 90(8):2700–2709

    Article  CAS  Google Scholar 

  5. Knothe G, Gerpen JV, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign, IL

    Book  Google Scholar 

  6. Graboski MS, McCormick RL (1998) Prog Energy Combust Sci 24(2):125–164

    Article  CAS  Google Scholar 

  7. Herbinet O, Pitz WJ, Westbrook CK (2008) Combust Flame 154(3):507–528

    Article  CAS  Google Scholar 

  8. Dooley S, Curran HJ, Simmie JM (2008) Combust Flame 153(1–2):2–32

    Article  CAS  Google Scholar 

  9. Huynh LK, Violi A (2008) J Org Chem 73(1):94–101

    Article  CAS  Google Scholar 

  10. Hayes CJ, Burgess DR (2009) Proc Combust Inst 32(1):263–270

    Article  CAS  Google Scholar 

  11. Herbinet O, Pitz WJ, Westbrook CK (2010) Combust Flame 157(5):893–908

    Article  CAS  Google Scholar 

  12. Mohamed Ismail H, Ng HK, Gan S, Lucchini T, Onorati A (2013) Fuel 106:388–400

    Article  CAS  Google Scholar 

  13. Zhao L, Xie M, Ye L, Cheng Z, Cai J, Li Y, Qi F, Zhang L (2013) Combust Flame 160(10):1958–1966

  14. Billaud F, Dominiguez V, Broutin P, Busson C (1995) J Am Oil Chem Soc 72(10):1149–1154

    Article  CAS  Google Scholar 

  15. Diévart P, Won SH, Gong J, Dooley S, Ju Y (2013) Proc Combust Inst 34(1):821–829

    Article  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Wallingford

    Google Scholar 

  17. Montgomery-Jr JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110(6):2822–2827

    Article  Google Scholar 

  18. Carstensen H–H, Naik CV, Dean AM (2005) J Phys Chem A 109(10):2264–2281

    Article  CAS  Google Scholar 

  19. Huynh LK, Carstensen H-H, Dean AM (2010) J Phys Chem A 114(24):6594–6607

    Article  CAS  Google Scholar 

  20. Paraskevas PD, Sabbe MK, Reyniers MF, Papayannakos N, Marin GB (2013) Chemistry 19(48):16431–16452

    Article  CAS  Google Scholar 

  21. El-Nahas AM, Navarro MV, Simmie JM, Bozzelli JosephW, Curran HJ, Dooley S, Metcalfe W (2007) J Phys Chem A 111(19):3727–3739

    Article  CAS  Google Scholar 

  22. Hakka MH, Bennadji H, Biet J, Yahyaoui M, Sirjean B, Warth V, Coniglio L, Herbinet O, Glaude PA, Billaud F, Battin-Leclerc F (2010) Int J Chem Kinet 42(4):226–252

    Article  CAS  Google Scholar 

  23. Jørgensen S, Andersen VF, Nilsson EJK, Nielsen OJ, Johnson MS (2010) Chem Phys Lett 490(4–6):116–122

    Article  Google Scholar 

  24. Gonzalez C, Schlegel HB (1989) J Chem Phys 90(4):2154–2161

    Article  CAS  Google Scholar 

  25. Gonzalez C, Schlegel HB (1990) J Phys Chem 94(14):5523–5527

    Article  CAS  Google Scholar 

  26. Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated volume I, National Bureau of Standards 1–160

  27. East ALL, Radom L (1997) J Chem Phys 106(16):6655–6674

    Article  CAS  Google Scholar 

  28. Kilpatrick JE, Pitzer KS (1949) J Chem Phys 17(11):1064–1075

    Article  CAS  Google Scholar 

  29. Eckart C (1930) Phys Rev 35(11):1303–1309

    Article  CAS  Google Scholar 

  30. Sumathi R, Carstensen HH, Green WH (2001) J Phys Chem A 105(39):8969–8984

    Article  CAS  Google Scholar 

  31. Sumathi R, Carstensen HH, Green WH (2001) J Phys Chem A 105(28):6910–6925

    Article  CAS  Google Scholar 

  32. Truong TN (2000) J Chem Phys 113(12):4957–4964

    Article  CAS  Google Scholar 

  33. Ratkiewicz A, Bieniewska J, Truong TN (2011) Int J Chem Kinet 43(2):78–98

    Article  CAS  Google Scholar 

  34. Ratkiewicz A, Truong TN (2010) Int J Chem Kinet 42(7):414–429

    Article  CAS  Google Scholar 

  35. Chang AY, Bozzelli JW, Dean AM (2000) Z Phys Chem 214(11):1533–1568

    CAS  Google Scholar 

  36. Poling BE, Prausnitz JM, Connell OJP (2000) The Properties of Gases and Liquids. McGraw-Hill, New York

    Google Scholar 

  37. Oyeyemi VB, Keith JA, Carter EA (2014) J Phys Chem A. doi:10.1021/jp412727w

    Google Scholar 

  38. Westbrook CK, Pitz WJ, Curran HJ (2006) J Phys Chem A 110(21):6912–6922

    Article  CAS  Google Scholar 

  39. Walker RW, Morley C (1997) Basic chemistry of combustion. In: Pilling MJ (ed) Low-temperature combustion and autoignition. Elsevier, Amsterdam, pp 1–124

    Chapter  Google Scholar 

  40. Villano SM, Huynh LK, Carstensen H-H, Dean AM (2011) J Phys Chem A 15(46):13425–13442

    Article  Google Scholar 

  41. Villano SM, Huynh LK, Carstensen H-H, Dean AM (2012) J Phys Chem A 116(21):5068–5089

    Article  CAS  Google Scholar 

  42. Porter NA, Pratt DA (2003) Org Lett 5(4):387–390

    Article  Google Scholar 

  43. http://webbook.nist.gov/chemistry/form-ser.html

  44. Ruscic B, Pinzon RE, Laszewski GV, Kodeboyina D, Burcat A, Leahy D, Montoya D, Wagner AF (2005) J Phys: Conf Ser 16:561–570

    CAS  Google Scholar 

  45. Ruscic B, Pinzon RE, Morton ML, Srinivasan NK, Su M-C, Sutherland JW, Michael JV (2006) J Phys Chem A 110(21):6592–6601

    Article  CAS  Google Scholar 

  46. Hall HK Jr, Baldt JH (1971) J Am Chem Soc 93(1):140–145

    Article  Google Scholar 

  47. Chao J, Hall KR, Marsh KN, Wilhoit RC (1986) J Phys Chem Ref Data 15(4):1369–1436

    Article  CAS  Google Scholar 

  48. Nuttall RLL, Laufer AH, Kilday MV (1971) J Chem Thermodyn 3:167–174

    Article  CAS  Google Scholar 

  49. Thermodynamics Research Center (1997) Selected values of properties of chemical compounds. Thermodynamics Research Center, Texas A&M University, College Station, Texas.

  50. Chase MW Jr (1998) NIST-JANAF themochemical tables, Fourth Edition. J Phys Chem Ref Data 9:1–1951

    Google Scholar 

  51. Dorofeeva OV (1997) Unpublished results Thermocenter of Russian Academy of Science, Moscow

Download references

Acknowledgments

We thank Dr. Carstensen (Ghent University) for helpful discussion and Dr. Villano (Colorado School of Mines) for providing calculation information on alkyl+O2 systems. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.03-2012.75. Computing resources and financial support were provided by the Institute for Computational Science and Technology—Ho Chi Minh City is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lam K. Huynh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, T.VT., Le, X.T. & Huynh, L.K. Mechanism and kinetics of low-temperature oxidation of a biodiesel surrogate−methyl acetate radicals with molecular oxygen. Struct Chem 26, 431–444 (2015). https://doi.org/10.1007/s11224-014-0495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0495-2

Keywords

Navigation