Skip to main content

Advertisement

Log in

Correlations of limiting oxygen index with structural polyphosphoester features by QSPR approaches

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Fire retardant materials diminish the hazard to life from fire. Polyphosphonates and polyphosphates display good flame retardancy and attractive plasticizing properties, being an important class of organophosphorus based polymer additives. Properties of previously synthesized polyphosphoesters are presented here, being simulated as monomers. In this quantitative structure–property relationship work, the flammability was expressed by limiting oxygen index (LOI) values, which were determined experimentally. Two types of chiral structures were found by molecular mechanics calculations using the MMFF94s force field for half of the monomers, consequently, two datasets were built. Structural parameters were calculated for the minimum energy structures and were related to the LOI values by multiple linear regression (MLR), artificial neural networks (ANNs), and support vector machines (SVMs). MLR calculations were combined with a genetic algorithm for variable selection. Stable and predictive MLR models in terms of 2D autocorrelation parameters weighed by atomic polarizabilities and of 3D-Morse descriptors were obtained. Somewhat inferior fits were found in the nonlinear modeling by ANNs and SVMs with the same set of descriptors. Monomers including R chiral structures gave more stable and predictive models compared to the S isomers in all approaches. Monomer geometry influences the flame retardancy, being favorable for R isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  2. Weil ED, Levchik SV, Ravey M, Zhu W (1999) A survey of recent progress in phosphorus-based flame retardants and some mode of action studies. Phosphorus Sulfur 144:17–20

    Article  Google Scholar 

  3. Annakutty KS, Kishore K (1988) Flame retardant polyphosphate esters: 1. Condensation polymers of bisphenol A with aryl phosphorodichloridates: synthesis, characterization and thermal studies. Polymer 29:756–761

    Article  CAS  Google Scholar 

  4. Kishore K, Annakutty KS, Mallick M (1988) Flame retardant polyphosphate esters: 2. Condensation polymers of bisphenol A with alkyl phosphorodichloridates: synthesis, characterization and thermal studies. Polymer 29:762–764

    Article  CAS  Google Scholar 

  5. Annakutty S, Kishore K (1988) A novel approach to structure—flammability correlation in polyphosphate esters. Polymer 29:1273–1276

    Article  CAS  Google Scholar 

  6. Kannan P, Kishore K (1991) New Flame Retardant Polyarylazo Phosphate and Phosphoramide Esters. Eur Polym J 27:1017–1021

    Article  CAS  Google Scholar 

  7. Ronova I (2010) Structural aspects in polymers: interconnections between conformational parameters of the polymers with their physical properties. Struct Chem 21:541–553

    Article  CAS  Google Scholar 

  8. Lomakin SM, Zaikov GE (1999) Ecological aspects of polymer flame retardancy. VSP, Utrecht

    Google Scholar 

  9. Iliescu S, Augusti M-G, Fagadar-Cosma E, Plesu N, Fagadar-Cosma G, Macarie L, Popa A, Ilia G (2012) Synthesis of new phosphorus-containing (co)polyesters using solid-liquid phase transfer catalysis and product characterization. Molecules 17:9090–9103

    Article  CAS  Google Scholar 

  10. Roy S, Maiti S (2004) Synthesis and characterization of new polyphosphonate for structure-flammability relationship towards group contribution approach. J Polym Mater 21:39–48

    Article  CAS  Google Scholar 

  11. Iliescu S, Ilia G, Dehelean G, Popa A (2002) New polyphosphonates obtained by vapor-liquid interfacial polycondensation. Polym Bull 48:451–458

    Article  CAS  Google Scholar 

  12. Iliescu S, Ilia G, Dehelean G, Popa A, Macarie L, Păcureanu L, Pascariu A (2002) New polyphosphonates obtained by vapor-liquid interfacial polycondensation. Phosphorus Sulfur 177:2051–2052

    Article  CAS  Google Scholar 

  13. Iliescu S, Ilia G, Popa A, Dehelean G, Pascariu A, Bora A (2003) Organophosphorus polymers obtained by vapor-liquid phase transfer catalyzed polycondensation. Rev Chim 54:689–693

    CAS  Google Scholar 

  14. Iliescu S, Ilia G, Dehelean G, Popa A, Macarie L, Pacureanu L (2001) Synthese des polyesters phosphoriques par polycondensation dans un systeme interphasique vapeur-liquide. Chem Bull “Politehnica” Univ (Timisoara) 46:141–145

  15. Iliescu S, Ilia G, Pascariu A, Popa A, Plesu N (2007) Solvent-free synthesis of phosphorus-containing polymers. Pure Appl Chem 79:1879–1884

    Article  CAS  Google Scholar 

  16. Iliescu S, Ilia G, Popa A, Dehelean G, Pascariu A, Macarie L, Pleşu N (2004) New phosphorus and nitrogen containing polymers by inverse phase transfer catalysis. Mol Cryst Liq Cryst 418:205–215

    Article  CAS  Google Scholar 

  17. Iliescu S, Popa A, Ilia G, Pleşu N (2005) The synthesis of biodegradable poly(phosphate esters) by vapor-liquid interfacial polycondensation. Rev Roum Chim 50:609–613

    CAS  Google Scholar 

  18. Iliescu S, Pascariu A, Plesu N, Popa A, Macarie L, Ilia G (2009) Unconventional method used in synthesis of polyphosphoesters. Polym Bull 63:485–495

    Article  CAS  Google Scholar 

  19. Iliescu S, Plesu N, Popa A, Macarie L, Ilia G (2011) Green synthesis of polymers containing phosphorus in the main chain. C R Chim 146:47–651

    Google Scholar 

  20. Iliescu S, Avram E, Pascariu A, Plesu N, Popa A, Ilia G (2011) New technique for the synthesis of polyphosphoesters. Macromol Res 19:1186–1191

    Article  CAS  Google Scholar 

  21. Iliescu S, Popa A, Plesu N, Macarie L, Ilia G (2010) Non-flammable polyphosphonates. In: Proceeding of the fourth edition of the symposium with international participation new trends and strategies in the chemistry of advanced materials. Timişoara, Romania, 101–104

  22. Iliescu S, Crisan M, Ilia G (2008) Phosphorus containing polymers: green synthesis and biological testing. In: Proceedings of the 15th symposium on analytical and environmental problems. Szeged, Hungary, pp 186–190

  23. Iliescu S, Bandur G, Nicoleta P (2007) Catalyse par Tranfert Interphasique Inverse. La cinétique de la Polycondensation par CTII du Dichlorophosphonate de Phényle avec Bisphénol A. Chem Bull “Politehnica” Univ (Timisoara) 52:74–78

  24. Iliescu S, Ilia G, Plesu N, Popa A (2006) Reaction parameters correlation in polyphosphates synthesis. Ann West Univ Timişoara Ser Chem 15:21–32

    CAS  Google Scholar 

  25. Suzuki T (1994) Quantitative structure-property relationships for auto-ignition temperatures of organic compounds. Fire Mater 18:81–88

    Article  CAS  Google Scholar 

  26. Pan Y, Jiang J, Ding X, Wang R, Jiang J (2010) Prediction of flammability characteristics of pure hydrocarbons from molecular structures. AIChE J 56:690–701

    CAS  Google Scholar 

  27. Gramatica P, Navas N, Todeschini R (1999) Classification of organic solvents and modelling of their physico-chemical properties by chemometric methods using different sets of molecular descriptors. Trend Anal Chem 18:461–471

    Article  CAS  Google Scholar 

  28. Gramatica P, Battaini F, Papa E (2004) QSAR prediction of physicochemical properties of esters. Fresen Environ Bull 13:1258–1262

    CAS  Google Scholar 

  29. Katritzky AR, Stoyanova-Slavova IB, Dobchev DA, Karelson M (2007) QSPR modeling of flash points: an update. J Mol Graph Model 26:529–536

    Article  CAS  Google Scholar 

  30. Chen CC, Liaw HJ, Kuo YY (2009) Prediction of autoignition temperatures of organic compounds by the structural group contribution approach. J Hazard Mater 162:746–762

    Article  CAS  Google Scholar 

  31. Gharagheizi F (2011) An accurate model for prediction of autoignition temperature of pure compounds. J Hazard Mater 189:211–221

    Article  CAS  Google Scholar 

  32. Gharagheizi F, Keshavarz MH, Sattari M (2012) A simple accurate model for prediction of flash point temperature of pure compounds. J Therm Anal Calorim 110:1005–1012

    Article  CAS  Google Scholar 

  33. Gharagheizi F, Ilani-Kashkouli P, Farahani N, Mohammadi AH (2012) Gene expression programming strategy for estimation of flash point temperature of non-electrolyte organic compounds. Fluid Phase Equilib 329:71–77

    Article  CAS  Google Scholar 

  34. Gharagheizi F, Alamdari RF (2008) Prediction of flash point temperature of pure components using a quantitative structure–property relationship model. QSAR Comb Sci 27:679–683

    Article  CAS  Google Scholar 

  35. Gharagheizi F (2009) A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure. J Hazard Mater 169:217–220

    Article  CAS  Google Scholar 

  36. Gharagheizi F (2009) Prediction of upper flammability limit percent of pure compounds from their molecular structures. J Hazard Mater 167:507–510

    Article  CAS  Google Scholar 

  37. Le T, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure–property relationship modeling of diverse materials properties. Chem Rev 112:2889–2919

    Article  CAS  Google Scholar 

  38. Katritzky AR, Maran U, Lobanov VS, Karelson M (2000) Structurally diverse quantitative structure–property relationship correlations of technologically relevant physical properties. J Chem Inf Comput Sci 40:1–18

    Article  CAS  Google Scholar 

  39. Katritzky AR, Kuanar M, Slavov S, Hall CD, Karelson M, Kahn I, Dobchev DA (2010) Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chem Rev 110:5714–5789

    Article  CAS  Google Scholar 

  40. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

    Google Scholar 

  41. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50:572–584

    Article  CAS  Google Scholar 

  42. Hawkins PCD, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set and the analysis of failures. J Chem Inf Model 52:2919–2936

    Article  CAS  Google Scholar 

  43. Tresadern G, Bemporad T, Howe A (2009) A comparison of ligand based virtual screening methods and application to corticotropin releasing factor 1 receptor. J Mol Graph Model 27:860–870

    Article  CAS  Google Scholar 

  44. Halgren TA (1999) MMFF VI.MMFF94s option for energy minimization studies. J Comput Chem 20:720–729

    Article  CAS  Google Scholar 

  45. Wold S, Dunn WJ III (1983) Multivariate quantitative structure-activity relationships (QSAR): conditions for their applicability. J Chem Inf Comput Sci 23:6–13

    Article  CAS  Google Scholar 

  46. Chirico N, Papa E, Kovarich S, Cassani S, Gramatica P (2012) QSARINS, software for QSAR MLR model development and validation. QSAR Res. Unit in Environ. Chem. and Ecotox., DiSTA,University of Insubria, Varese, Italy, http://www.qsar.it

  47. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132

    Article  CAS  Google Scholar 

  48. Zupan J, Gasteiger J (1995) Neural Networks for Chemistry and Drug Design, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  49. Vapnik V (1995) The Nature of Statistical Learning Theory. Springer-Verlag, New York

    Book  Google Scholar 

  50. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Software. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  51. Lindgren F, Hansen B, Karcher W, Sjöström M, Eriksson L (1996) Model validation by permutation tests: applications to variable selection. J Chemometr 10:521–532

    Article  CAS  Google Scholar 

  52. Todeschini R, Consonni V, Maiocchi A (1999) The K correlation index theory development and its application in chemometrics. Chemometr Intell Lab 46:13–29

    Article  CAS  Google Scholar 

  53. Neter J, Wasserman W, Kutner MH (1985) Applied linear statistical models: Regression, analysis of variance, and experimental designs. Irwin, Homewood

    Google Scholar 

  54. Chatterjee S, Price B (1991) Regression Analysis by Example, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  55. Frank IE, Todeschini R (1994) The Data Analysis Handbook. Elsevier, Amsterdam

    Google Scholar 

  56. Gramatica P, Cassani S, Roy PP, Kovarich S, Yap C, Papa WE (2012) QSAR Modeling is not “Push a Button ans Find a Correlation”: a Case Study of Toxicity of (Benzo-)triazole on Algae. Mol Inf 31:817–835

    Article  CAS  Google Scholar 

  57. Goodarzi M, Deshpande S, Murugesan V, Katti SB, Prabhakar YS (2009) Is Feature Selection Essential for ANN Modeling. QSAR Comb Sci 28:1487–1499

    Article  CAS  Google Scholar 

  58. Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation Coefficient. J Chem Inf Model 51:2320–2335

    Article  CAS  Google Scholar 

  59. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KHA, Tropsha (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aid Mol Des 17:241–253

    Article  CAS  Google Scholar 

  60. Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair RM, Branham WS, Dial SL, Moland CL, Sheehan DM (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Model 41:186–195

    Article  CAS  Google Scholar 

  61. Schüürmann G, Ebert RU, Chen J, Wang B, Kühne R (2008) External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean. J Chem Inf Model 48:2140–2145

    Article  Google Scholar 

  62. Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model 49:1669–1678

    Article  CAS  Google Scholar 

  63. Gramatica P (2007) Principles of QSAR model validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  64. Massarelli I, Macchia M, Minutolo F, Prota G, Bianucci AM (2009) QSAR models for predicting enzymatic hydrolysis of new chemical entities in ‘soft-drug’ design. Bioorgan Med Chem 17:3543–3556

    Article  CAS  Google Scholar 

  65. Burden FR (1989) Molecular identification number for substructure searches. J Chem Inf Comput Sci 29:225-221

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Project 1.1 of the Institute of Chemistry Timisoara of the Romanian Academy. The authors are indebted to Chemaxon Ltd., OpenEye Ltd. and Prof. Paola Gramatica from The University of Insubria (Varese, Italy) for giving access to their software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Funar-Timofei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funar-Timofei, S., Iliescu, S. & Suzuki, T. Correlations of limiting oxygen index with structural polyphosphoester features by QSPR approaches. Struct Chem 25, 1847–1863 (2014). https://doi.org/10.1007/s11224-014-0474-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0474-7

Keywords

Navigation