Skip to main content

Advertisement

Log in

Aromatic interaction profile to understand the molecular basis of raltegravir resistance

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Integrase (IN) is the enzyme of human immunodeficiency virus (HIV) which inserts the viral DNA (vDNA) into the host genome for successful viral replication leading to the infection. However, the chemical basis of HIV IN catalysis is speculative due to lack of complete co-crystal structure. Using the recently published prototype foamy virus IN crystal structure, we developed a model structure of HIV IN showing interaction of vDNA, the metal (Mg2+) cofactor, and raltegravir (RLT) in the active site. Molecular docking and dynamics simulations studies showed that RLT uses it core central ring with diketo motif for Mg2+ chelation and bridge interaction with DDE motif. The triple arene interactions mediated by RLT with neighboring molecular motifs (Y143, cytosine, and adenine) is maintained during long simulation in wild type (WT). The fluorobenzyl and oxadiazole moieties of RLT forms aromatic stacking with cytosine base (head stacking) aromatic side chain of Y143 (tail stacking), respectively, while central ring further establishes aromatic stacking with distorted adenine base of vDNA (central stacking). The novel triple stacking systems were further explored to understand the molecular basis of drug resistance by molecular simulation. The in silico mutation (N155H, Q148H, and Q148H + G140S) and simulation studies elucidated the structural mechanism of resistance to RLT. The simulation studies provided the molecular basis for interdependency observed for the primary and secondary (Q148H and G140S) mutations and also explained the mechanism of viral fitness regain. Our study reveals that triple stacking and its consequence in terms of VdW energetic profile acts as a critical point to understand the drug-resistance. Here, we demonstrate that the root mean square deviation of centroid system (aromatic stacking) can be used as a major determinant of RLT binding toward the fold resistance. This is first kind of report, which discloses a strategy to explore the molecular level of drug resistance profile using aromatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HIV-1:

Human immunodeficiency virus type 1

PFV-1:

Prototype foamy virus type 1

RLT:

Raltegravir

ARVs:

Antiretroviral drugs

IN:

Integrase

RT:

Reverse transcriptase

INSTI:

IN strand transfer inhibitor

References

  1. Herbein G, Varin A (2010) The macrophage in HIV-1 infection: from activation to deactivation. Retrovirology 7:33

    Article  Google Scholar 

  2. Jaeger S, Ertaylan G, van Dijk D, Leser U, Sloot P (2010) Inference of surface membrane factors of HIV-1 infection through functional interaction networks. PLoS ONE 5:e13139

    Article  Google Scholar 

  3. Rodriguez AM, Turk G, Pascutti MF, Falivene J, Gherardi MM (2010) Development of vaccines for HIV-1. Relevance of subtype-specific cellular immunity. Medicina 70:543–554

    CAS  Google Scholar 

  4. Mehellou Y, De Clercq E (2010) Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem 53:521–538

    Article  CAS  Google Scholar 

  5. Marchand C, Maddali K, Metifiot M, Pommier Y (2009) HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 9:1016–1037

    Article  CAS  Google Scholar 

  6. Hadi V, Koh YH, Sanchez TW, Barrios D, Neamati N, Jung KW (2010) Development of the next generation of HIV-1 integrase inhibitors: pyrazolone as a novel inhibitor scaffold. Bioorg Med Chem Lett 20:6854–6857

    Article  CAS  Google Scholar 

  7. Serrao E, Odde S, Ramkumar K, Neamati N (2009) Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology 6:25

    Article  Google Scholar 

  8. Metifiot M, Marchand C, Maddali K, Pommier Y (2010) Resistance to integrase inhibitors. Viruses 2:1347–1366

    Article  CAS  Google Scholar 

  9. Nakamura H, Miyazaki N, Hosoya N, Koga M, Odawara T, Kikuchi T, Koibuchi T, Kawana-Tachikawa A, Fujii T, Miura T, Iwamoto A (2011) Long-term successful control of super-multidrug-resistant human immunodeficiency virus type 1 infection by a novel combination therapy of raltegravir, etravirine, and boosted-darunavir. J Infect Chemother 17:105–110

    Article  CAS  Google Scholar 

  10. Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A (2009) Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 276:2926–2946

    Article  CAS  Google Scholar 

  11. Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Gonzalez Paz O, Hazuda DJ, Jones P, Kinzel O, Laufer R, Monteagudo E, Muraglia E, Nizi E, Orvieto F, Pace P, Pescatore G, Scarpelli R, Stillmock K, Witmer MV, Rowley M (2008) Discovery of raltegravir, a potent, selective orally bioavailable HIV–integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51:5843–5855

    Article  CAS  Google Scholar 

  12. Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221

    Article  CAS  Google Scholar 

  13. Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discovery 4:236–248

    Article  CAS  Google Scholar 

  14. Chiu TK, Davies DR (2004) Structure and function of HIV-1 integrase. Curr Top Med Chem 4:965–977

    Article  CAS  Google Scholar 

  15. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J, Wai JS, Young S, Vacca J, Hazuda DJ (2002) Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci USA 99:6661–6666

    Article  CAS  Google Scholar 

  16. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236

    Article  CAS  Google Scholar 

  17. Maignan S, Guilloteau J-P, Zhou-Liu Q, Clément-Mella C, Mikol V (1998) Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol 282:359–368

    Article  CAS  Google Scholar 

  18. Sierra S, Kupfer B, Kaiser R (2005) Basics of the virology of HIV-1 and its replication. J Clin Virol 34:233–244

    Article  CAS  Google Scholar 

  19. Marchand C, Johnson AA, Semenova E, Pommier Y (2006) Mechanisms and inhibition of HIV integration. Drug Discov Today Dis Mech 3:253–260

    Article  Google Scholar 

  20. Engelman A, Craigie R (1992) Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol 66:6361–6369

    CAS  Google Scholar 

  21. Kawasuji T, Fuji M, Yoshinaga T, Sato A, Fujiwara T, Kiyama R (2006) A platform for designing HIV integrase inhibitors. Part 2: a two-metal binding model as a potential mechanism of HIV integrase inhibitors. Bioorg Med Chem 14:8420–8429

    Article  CAS  Google Scholar 

  22. Yasmin S, Karampuri S, Sharon A, Bal C (2011) Integrase strand transfer inhibitors as potential anti-HIV agent. GERF Bull Biosci 2:18–25

    Google Scholar 

  23. Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, Egbertson M, Melamed JY, Young S, Hamill T, Cole JL, Hazuda DJ (2000) HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci USA 97:11244–11249

    Article  CAS  Google Scholar 

  24. Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM, Reznikoff WS (2005) Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Antimicrob Agents Chemother 49:2035–2043

    Article  CAS  Google Scholar 

  25. Steiniger-White M, Rayment I, Reznikoff WS (2004) Structure/function insights into Tn5 transposition. Curr Opin Struct Biol 14:50–57

    Article  CAS  Google Scholar 

  26. Barreca ML, De Luca L, Iraci N, Chimirri A (2006) Binding mode prediction of strand transfer HIV-1 integrase inhibitors using Tn5 transposase as a plausible surrogate model for HIV-1 integrase. J Med Chem 49:3994–3997

    Article  CAS  Google Scholar 

  27. Savarino A (2007) In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology 4:21

    Article  Google Scholar 

  28. Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, Fujishita T, Sugimoto H, Endo T, Murai H, Davies DR (1999) Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc Natl Acad Sci USA 96:13040–13043

    Article  CAS  Google Scholar 

  29. Bujacz G, Alexandratos J, Wlodawer A, Merkel G, Andrake M, Katz RA, Skalka AM (1997) Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J Biol Chem 272:18161–18168

    Article  CAS  Google Scholar 

  30. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci USA 107:20057–20062

    Article  CAS  Google Scholar 

  31. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A (2010) Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci USA 107:15910–15915

    Article  CAS  Google Scholar 

  32. Sharon A, Balaraju T, Bal C (2011) A catalytic 3D model development of HIV–integrase and drug resistance understanding by molecular dynamics simulation. Antiviral Res 90:A43–A44

    Article  Google Scholar 

  33. Goethals O, Van Ginderen M, Vos A, Cummings MD, Van Der Borght K, Van Wesenbeeck L, Feyaerts M, Verheyen A, Smits V, Van Loock M, Hertogs K, Schols D, Clayton RF (2011) Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second-generation HIV-1 integrase inhibitor. Antiviral Res 91:167–176

    Article  CAS  Google Scholar 

  34. Johnson BC, Metifiot M, Pommier Y, Hughes SH (2012) Molecular dynamics approaches estimate the binding energy of HIV-1 integrase inhibitors and correlate with in vitro activity. Antimicrob Agents Chemother 56:411–419

    Article  CAS  Google Scholar 

  35. Xue W, Liu H, Yao X (2012) Molecular mechanism of HIV-1 integrase–vDNA interactions and strand transfer inhibitor action: a molecular modeling perspective. J Comput Chem 33:527–536

    Article  CAS  Google Scholar 

  36. Xue W, Qi J, Yang Y, Jin X, Liu H, Yao X (2012) Understanding the effect of drug-resistant mutations of HIV-1 intasome on raltegravir action through molecular modeling study. Mol BioSyst 8:2135–2144

    Article  CAS  Google Scholar 

  37. Schrödinger (2011) LLC, New York

  38. Prime V 3.0, Schrödinger, LLC, New York V.3.0, 2011

  39. Desmond-V-3.0 Molecular dynamics system, V.3.0, D. E. Shaw Research, Schrödinger, LLC, New York, NY, (2010)

  40. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  41. MacroModel-V-9.9 (2011) Schrödinger, LLC, New York

  42. Glide-V-5.7 (2011) V.2.5, Schrödinger, LLC, New York

  43. Laskowski RA, Moss DS, Thornton JM (1993) Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231:1049–1067

    Article  CAS  Google Scholar 

  44. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  45. Sharon A, Chu CK (2008) Understanding the molecular basis of HBV drug resistance by molecular modeling. Antiviral Res 80:339–353

    Article  CAS  Google Scholar 

  46. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  47. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  48. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–38

    Google Scholar 

  50. Andricioaei I, Karplus M (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 115:6289–6292

    Article  CAS  Google Scholar 

  51. Sharma H, Cheng X, Buolamwini JK (2012) Homology model-guided 3D-QSAR studies of HIV-1 integrase inhibitors. J Chem Inf Model 52:515–544

    Article  CAS  Google Scholar 

  52. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    Article  CAS  Google Scholar 

  53. Mati IK, Cockroft SL (2010) Molecular balances for quantifying non-covalent interactions. Chem Soc Rev 39:4195–4205

    Article  CAS  Google Scholar 

  54. Baldanti F, Paolucci S, Gulminetti R, Brandolini M, Barbarini G, Maserati R (2010) Early emergence of raltegravir resistance mutations in patients receiving HAART salvage regimens. J Med Virol 82:116–122

    Article  CAS  Google Scholar 

  55. Sichtig N, Sierra S, Kaiser R, Daumer M, Reuter S, Schulter E, Altmann A, Fatkenheuer G, Dittmer U, Pfister H, Esser S (2009) Evolution of raltegravir resistance during therapy. J Antimicrob Chemother 64:25–32

    Article  CAS  Google Scholar 

  56. Métifiot M, Maddali K, Naumova A, Zhang X, Marchand C, Pommier Y (2010) Biochemical and pharmacological analyses of HIV-1 integrase flexible loop mutants resistant to raltegravir. Biochemistry 49:3715–3722

    Article  Google Scholar 

  57. Marinello J, Marchand C, Mott BT, Bain A, Thomas CJ, Pommier Y (2008) Comparison of raltegravir and elvitegravir on HIV-1 integrase catalytic reactions and on a series of drug-resistant integrase mutants. Biochemistry 47:9345–9354

    Article  CAS  Google Scholar 

  58. Fransen S, Gupta S, Danovich R, Hazuda D, Miller M, Witmer M, Petropoulos CJ, Huang W (2009) Loss of raltegravir susceptibility by human immunodeficiency virus type 1 is conferred via multiple nonoverlapping genetic pathways. J Virol 83:11440–11446

    Article  CAS  Google Scholar 

  59. King PJ, Lee DJ, Reinke RA, Victoria JG, Beale K, Robinson WE Jr (2003) Human immunodeficiency virus type-1 integrase containing a glycine to serine mutation at position 140 is attenuated for catalysis and resistant to integrase inhibitors. Virology 306:147–161

    Article  CAS  Google Scholar 

  60. Kumar A, Hajjar E, Ruggerone P, Ceccarelli M (2010) Molecular simulations reveal the mechanism and the determinants for ampicillin translocation through OmpF. J Phys Chem B 114:9608–9616

    Article  CAS  Google Scholar 

  61. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) Origin of attraction and directionality of the pi/pi interaction: model chemistry calculations of benzene dimer interaction. J Am Chem Soc 124:104–112

    Article  CAS  Google Scholar 

  62. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl 42:1210–1250

    Article  CAS  Google Scholar 

  63. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, Lazzarin A, Clotet B, Kumar PN, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Zhao J, Chen J, Ryan DM, Rhodes RR, Killar JA, Gilde LR, Strohmaier KM, Meibohm AR, Miller MD, Hazuda DJ, Nessly ML, DiNubile MJ, Isaacs RD, Teppler H, Nguyen BY (2008) Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med 359:355–365

    Article  CAS  Google Scholar 

  64. Malet I, Delelis O, Valantin MA, Montes B, Soulie C, Wirden M, Tchertanov L, Peytavin G, Reynes J, Mouscadet JF, Katlama C, Calvez V, Marcelin AG (2008) Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 52:1351–1358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thanks Department of Biotechnology, Government of India for financial support (BT/PR14237/MED/29/196/2010). TB gratefully acknowledges the award of Junior Research Fellowship from Department of Science and Technology, Government of India (DST Grant No: SR/FT/CS-001/2009). AK thanks the computational facility at CRS4 (Polaris), Pula, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke Sharon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 11133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaraju, T., Kumar, A., Bal, C. et al. Aromatic interaction profile to understand the molecular basis of raltegravir resistance. Struct Chem 24, 1499–1512 (2013). https://doi.org/10.1007/s11224-012-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0181-1

Keywords

Navigation