Skip to main content
Log in

Tacticity of poly(butyl-α-cyanoacrylate) chains in nanoparticles: NMR spectroscopy and DFT calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

NMR spectroscopy and quantum chemical calculations were applied for structural characterization and determination of the preferred stereochemical sequence distribution of the monomer units in the homopolymer chains of poly(butyl-α-cyanoacrylate) nanoparticles. The stereochemical sequence distribution of the monomer units was defined by analysis of their high-resolution 1D 1H and 13C NMR and 2D J-resolved, 1H/13C HSQC and 1H/13C HMBC NMR spectra. The results were verified by employment of B3LYP/6-31G(d) calculations and are consistent with the preferred tendency of polymer chains of PBCN to adopt syndiotactic placements. The proton and carbon chemical shielding were calculated at BPW91/6-31+G(2d,p) level using the GIAO approach and B3LYP/6-31G(d) optimized geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murday JS, Siegel RW, Stein J, Wright JF (2009) Biol Med 5:251–273

    CAS  Google Scholar 

  2. Moghimi SM, Hunter AC, Murray JC (2005) FASEB J 19:311–330

    Article  CAS  Google Scholar 

  3. Wagner V, Dullaart A, Bock A-K, Zweck A (2006) Nat Biotechnol 24:1211–1217

    Article  CAS  Google Scholar 

  4. Couvreur P, Kante B, Roland M, Guiot P, Baudhuin P, Speiser P (1979) J Pharm Pharmacol 31:331–332

    Article  CAS  Google Scholar 

  5. Lenaerts V, Couvreur P, Christians-Leyh D, Joiris E, Rolland M, Rollman B, Speiser P (1984) Biomaterials 5:65–68

    Article  CAS  Google Scholar 

  6. Lyeh D, Couvreur P, Lenaerts V, Roland M, Speiser P (1984) Labo-Pharma 32:100–104

    Google Scholar 

  7. Scherer D, Robinson JR, Kreuter J (1994) Int J Pharm 101:303–307

    Article  Google Scholar 

  8. Duncan R (1986) CRC Crit Rev Biocompat 2:127–145

    CAS  Google Scholar 

  9. O’Sullivan C, Birkinshaw C (2002) Polym Degrad Stab 78:7–15

    Article  Google Scholar 

  10. Muller RH, Lherm C, Herbort J, Couvreur P (1990) Biomaterials 11:590–595

    Article  CAS  Google Scholar 

  11. Vansnick L, Couvreur P, Christiaens-Ley D, Roland M (1985) Pharm Res 1:36–41

    Article  Google Scholar 

  12. Lehrm C, Muller R, Puisieux F, Couvreur P (1992) Int J Pharm 84:13–22

    Article  Google Scholar 

  13. Leonard F, Kulkarni RK, Brandes G, Nelson J, Cameron JJ (1996) J Appl Polym Sci 10:259–272

    Article  Google Scholar 

  14. Shalaby SW, Shalaby WSW (2004) In: Shalaby SW, Burg KJL (eds) Absorbable and biodegradable polymers, Chap 5. CRC Press, Boca Raton, pp 59–75

    Google Scholar 

  15. Tonelli AE (1989) NMR spectroscopy and polymer microstructure: the conformational connection. Wiley, New York

    Google Scholar 

  16. Stewart JJP (1989) J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  17. Becke AD (1993) J Chem Phys 98:5648–5650

    Article  CAS  Google Scholar 

  18. Lee CT, Wang WT, Pople RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Granovsky AA, Firefly version 7.1.G, http://classic.chem.msu.su/gran/firefly/index.html

  20. Ditchfield R (1974) Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  21. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  22. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09, Revision A.01, Gaussian, Inc., Wallingford

  24. Murthy RSR, Reddy LH (2006) Poly(alkycyanoacrylate) nanoparticles for delivery of anti-cancer drugs. In: Mansoor MA (ed) Nanotechnology for cancer therapy. Taylor & Francis Group, LLC, New York, pp 251–288

    Chapter  Google Scholar 

  25. Gnanou Y, Fontanille M (2008) Organic and physical chemistry of polymers. Wiley, Hoboken, p 29

    Book  Google Scholar 

  26. Suchoparek M, Spevacek J (1993) Macromolecules 26:102–106

    Article  CAS  Google Scholar 

  27. Robello DR, Eldridge TD, Michaels FM (1999) J Polym Sci A 37:2219–2224

    Article  CAS  Google Scholar 

  28. Dong L, Hill DJT, O′Donnell JH, Whittaker AK (1994) Macromolecules 27:1830–1834

    Article  CAS  Google Scholar 

  29. Kamiya N, Yamamoto Y, Inoue Y, Chujo R, Doi Y (1989) Macromolecules 22:1676–1682

    Article  CAS  Google Scholar 

  30. Beham N, Birkinshaw C, Clarke N (2001) Biomaterials 22:1335–1344

    Article  Google Scholar 

  31. Poupaert JH, Couvreur P (2003) J Control Release 92:19–26

    Article  CAS  Google Scholar 

  32. Ochsenfeld C, Kussmann J, Koziol F (2004) Angew Chem Int Ed 43:4485–4489

    Article  CAS  Google Scholar 

  33. Kussmann J, Ochsenfeld C (2007) J Chem Phys 127:204103

    Article  Google Scholar 

  34. Beer M, Ochsenfeld C (2008) J Chem Phys 128:221102

    Article  Google Scholar 

  35. Facelli JC (2011) Prog NMR Spectroscopy 58:176–201

    Article  CAS  Google Scholar 

  36. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  37. Blicharska B, Kupka T (2002) J Mol Struct 613:153–166

    Article  CAS  Google Scholar 

  38. d’Antuono P, Botek E, Champagne B, Wiem J, Reyniers M-F, Marin GB, Adriaensens PJ, Gelan JM (2005) Chem Phys Lett 41:207–213

    Article  Google Scholar 

Download references

Acknowledgments

Funding of this study by the Bulgarian Fund for Scientific Research, under Grant DO 02-168/2008 is gratefully acknowledged. The quantum chemical calculations were performed on the computer system installed at the Institute of Organic Chemistry, Bulgarian Academy of Sciences with the financial support of the Bulgarian Scientific Research Fund under the Project “MADARA” (RNF 01/0110, contract no. DO 02-52/2008). The NMR spectrometers are part of the National NMR Network and were purchased in the framework of the National Programme for Scientific Re-equipment, contract REDE/1517/RMN/2005, with funds from POCI 2010 (FEDER) and Fundação para a Ciência e a Tecnologia (FCT). The authors are grateful to Dr N. Vasilev, Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Galya Ivanova or Venelin Enchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markova, N., Ivanova, G., Enchev, V. et al. Tacticity of poly(butyl-α-cyanoacrylate) chains in nanoparticles: NMR spectroscopy and DFT calculations. Struct Chem 23, 815–824 (2012). https://doi.org/10.1007/s11224-011-9928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9928-3

Keywords

Navigation