Skip to main content
Log in

Theoretical study on the hydrogen bonding of five-membered heteroaromatics with water

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The hydrogen-bonding ability of five-membered heteroaromatic molecules containing one chalcogen and two heteroatoms with nitrogen in addition to chalcogen, respectively, have been analyzed using density functional and molecular orbital methods through adduct formation with water. The stabilization energies for all the adducts are established at B3LYP/6-31+G* and MP2/6-31+G* levels after correcting for the basis set superposition error by using the counterpoise method and also corrected for zero-point vibrational energies. A natural bond orbital analysis at B3LYP/6-31+G* level and natural energy decomposition analysis at HF/6-31+G* using MP2/6-31+G* geometries have been carried out to understand the nature of hydrogen-bonding interaction in monohydrated heterocyclic adducts. Nucleus-independent chemical shift have been evaluated to understand the correlation between hydrogen bond formation and aromaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Solimannejad M, Massahi S, Scheiner S (2009) J. Mol Struct (Theochem) 913:50

    Article  CAS  Google Scholar 

  2. Oliveira BG, RCMUde Araújo, Ramos MN (2009) J. Mol Struct (Theochem) 908:79

    Article  CAS  Google Scholar 

  3. Bandyopadhyay I, Lee HM, Kim KS (2005) J Phys Chem A 109:1720

    Article  CAS  Google Scholar 

  4. Sobczyk L, Grabwski SJ, Krygowski TM (2005) Chem Rev 105:3513

    Article  CAS  Google Scholar 

  5. Parthasarathi R, Subramanian V, Sathyamurthy N (2006) J Phys Chem A 110:3349

    Article  CAS  Google Scholar 

  6. Melandri S, Sanz ME, Caminati W, Favero PG, Kisiel Z (1998) J Am Chem Soc 120:11504

    Article  CAS  Google Scholar 

  7. Kun Y, LingLing LÜ, YanZhi L (2008) Chin Sci Bull 53:1315

    Article  Google Scholar 

  8. Schwöbel J, Ebert R, Kühne R, Schüürmann G (2009) J Comput Chem 30:1454

    Article  Google Scholar 

  9. Lopes PEM, Lamoureux G, Mackerell AD (2009) J Comput Chem 30:1821

    Article  CAS  Google Scholar 

  10. Steiner T (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  11. Zhao Y, Tishchenko O, Truhlar DG (2005) J Phys Chem B 109:19046

    Article  CAS  Google Scholar 

  12. Schleyer PVR (2005) Chem Rev 105:3433

    Article  CAS  Google Scholar 

  13. Raimondi M, Calderoni G, Famulari A, Raimondi L, Cozzi F (2003) J Phys Chem A 107:772

    Article  CAS  Google Scholar 

  14. Mohan N, Vijayalakshmi KP, Koga N, Suresh CH (2010) J Comput Chem 31:2874

    CAS  Google Scholar 

  15. Imai YN, Inoue Y, Nakanishi I, Kitaura K (2009) J Comput Chem 30:2267

    CAS  Google Scholar 

  16. Samanta U, Chakrabarti P, Chandrasekhar J (1998) J Phys Chem A 102:8964

    Article  CAS  Google Scholar 

  17. Huang D-M, Wang Y-B (2004) J Phys Chem A 108:11375

    Article  CAS  Google Scholar 

  18. Kaur D, Khanna S (2011) Comput Theor Chem 963:71

    Article  CAS  Google Scholar 

  19. Li S, Cooper VR, Thonhauser T, Puzder A, Langreth DC (2008) J Phys Chem A 112:9031

    Article  CAS  Google Scholar 

  20. Carles S, Lecomte F, Schermann JP, Desfrancois C (2004) J Phys Chem A 104:10662

    Article  Google Scholar 

  21. Sarkhel S, Rich A, Egli M (2003) J Am Chem Soc 125:8998

    Article  CAS  Google Scholar 

  22. Hammed S, Akhtar T (2011) Curr Org Chem 15:694

    Article  Google Scholar 

  23. Lipshutz BH (1986) Chem Rev 86:795

    Article  CAS  Google Scholar 

  24. Marino G (1971) Adv Heterocycl Chem 13:235

    Article  Google Scholar 

  25. Streitwieser A (1994) Organische Chemie. VCH, Basel

    Google Scholar 

  26. Modelli A, Burrow PD (2004) J Phys Chem A 108:5721

    Article  CAS  Google Scholar 

  27. Hiraoka K, Takimoto H, Yamabe S (1987) J Am Chem Soc 109:7346

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegal HB, Scuseria GE, Robb MA, Cheeseman JR, Zarkrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennuci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Raghvachari K, Foresman JB, Oritz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Kamaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2001) Guassian Inc., Pittsburgh

  29. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  30. Foresman JB, Frisch E (1996) Exploring chemistry with electronic structure methods. Guassian Inc, Pittsburgh

    Google Scholar 

  31. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  32. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683

    Article  CAS  Google Scholar 

  33. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  34. Reed AE, Weinhold F, Curtiss LA (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  35. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842

    Article  CAS  Google Scholar 

  36. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NjvE (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  37. Glendening ED, Streitwieser A (1994) J Chem Phys 100:2900

    Article  CAS  Google Scholar 

  38. Glendening ED (1996) J Am Chem Soc 118:2473

    Article  CAS  Google Scholar 

  39. Schenter GK, Glendening ED (1996) J Phys Chem 100:17152

    Article  CAS  Google Scholar 

  40. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute. University of Wisconsin, Madison

    Google Scholar 

  41. Weinhold F, Landis CR (2001) Chem Educ Res Pract 2:91

    Article  CAS  Google Scholar 

  42. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  43. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  44. Hideaki U, Morokuma K (1977) J Am Chem Soc 99:1316

    Article  Google Scholar 

  45. Kaur D, Khanna S, Kaur RP (2010) J Mol Struct (Theochem) 949:14

    Article  CAS  Google Scholar 

  46. Böhm H-J, Klebe G, Brode S, Hesse U (1996) Chem Eur J 2:1509

    Article  Google Scholar 

  47. Nobeli I, Price SL, Lommerse JPM, Taylor R (1997) J Comput Chem 18:2060

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to UGC for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damanjit Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 735 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, D., Khanna, S. Theoretical study on the hydrogen bonding of five-membered heteroaromatics with water. Struct Chem 23, 755–764 (2012). https://doi.org/10.1007/s11224-011-9917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9917-6

Keywords

Navigation