Skip to main content

Advertisement

Log in

Understanding hydrogen bonding of hydroxamic acids with some amino acid side chain model molecules

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The hydrogen-bonding abilities of a few amino acid side chains have been studied through aggregation of methylamine, methanol, and acetic acid (as model molecules) with formo- and thioformo- hydroxamic acids using ab initio calculations. Forty six aggregates representing all possible H-bond interactions between these amino acid side chain groups and two most stable keto and enol tautomeric forms of both hydroxamic acids have been optimized. Although participation of conventional H-bond donors and acceptors leads to significant stabilization energies, yet C–H···O, C–H···N, S–H···O, and S–H···N etc. unconventional H-bonds also contribute to stabilize interactions in many aggregates. Strength of H-bonds of the molecules with formo- and thioformo- hydroxamic acid studied follows the order acetic acid > methylamine > methanol. A comparative study of atomic charges and orbital interactions employing NBO analysis has been carried out to explore the role of bond polarizations, charge transfer, and electron delocalizations as contributors to stabilization energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berka K, Laskowski R, Riley KE, Hobza P, Vondràšek J (2009) J Chem Theory Comput 5:982

    Article  CAS  Google Scholar 

  2. Scheiner S, Kar T, Pattanayak J (2002) J Am Chem Soc 124:13257

    Article  CAS  Google Scholar 

  3. Nagy PI, Erhardt PW (2008) J Phys Chem A 112:4342

    Article  CAS  Google Scholar 

  4. Banerjee R, Sen M, Bhattacharya D, Saha P (2003) J Mol Biol 333:211

    Article  CAS  Google Scholar 

  5. Chakrabarti P, Bhattacharya R (2007) Prog Biophys Mol Biol 95:83

    Article  CAS  Google Scholar 

  6. Misura KMS, Morozov AV, Baker D (2004) J Mol Biol 342:651

    Article  CAS  Google Scholar 

  7. Mitchell JBO, Laskowski RA, Thornton JM (1998) Proteins Struct Funct Bioinf 29:370

    Google Scholar 

  8. Braiman MS, Briercheck DM, Kriger KM (1999) J Phys Chem B 103:4744

    Article  CAS  Google Scholar 

  9. Yang JM, Tsai CH, Hwang MJ, Tsai HK, Hwang JK, Kao CY (2002) Protein Sci 11:1897

    Article  CAS  Google Scholar 

  10. Phillips ST, Piersanti G, Bartlett PA (2005) Proc Natl Acad Sci USA 102:13727

    Article  Google Scholar 

  11. Myers JK, Pace CN (1996) Biophys J 71:2033

    Article  CAS  Google Scholar 

  12. Stickle DF, Presta LG, Dill KA, Rose GD (1992) J Mol Biol 226:1143

    Article  CAS  Google Scholar 

  13. Bauer L, Exner O (1974) Angew Chem Int Ed Engl 13:376

    Article  Google Scholar 

  14. El Yazal J, Pang Y-P (2000) J Phys Chem B 104:6499

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, AlLaham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES and Pople JA (2001) Gaussian Inc, Pittsburgh PA

  16. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  17. Foresman JB, Frisch E (1996) Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  18. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  19. Aleman C (2001) J Phys Chem A 105:6717

    Article  CAS  Google Scholar 

  20. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  21. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  22. Kaur D, Kohli R (2008) Int J Quantum Chem 108:119

    Article  CAS  Google Scholar 

  23. Kaur D, Kohli R, Kaur RP (2008) J Mol Struc (Theochem) 864:72

    Article  CAS  Google Scholar 

  24. Kaur D, Kohli R (2011) Int J Quantum Chem 111:2931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damanjit kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material. Supplementary data of the paper can be obtained from journal website. Data include Tables (S1–S15) incorporating electron delocalizations, atomic charges, and geometrical parameters of aggregates of both the HAs with MeNH2, MeOH, and AcOH.

Supplementary material 1 (DOC 639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

kaur, D., Kohli, R. Understanding hydrogen bonding of hydroxamic acids with some amino acid side chain model molecules. Struct Chem 23, 161–173 (2012). https://doi.org/10.1007/s11224-011-9840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9840-x

Keywords

Navigation