Skip to main content
Log in

Novel guanidinium zwitterion and derived ionic liquids: physicochemical properties and DFT theoretical studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A new zwitterion containing 1,1,3,3-tetramethylguanidine was synthesized using a simple method, and the physicochemical properties as well as the crystal structure of the compound were also studied. Two new acidic ionic liquids (ILs) were synthesized using the zwitterion as the precursor and the physicochemical properties including density, viscosity, thermal property, and acidic scale of the ILs were investigated. A density functional theory investigation of the geometrical structures and electronic properties of the guanidinium triflate ionic liquid was also presented for better understanding the new ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Welton T (1999) Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  2. Rogers RD, Seddon KR, Volkov S (2002) In: Rogers RD, Seddon KR, Volkov S (eds) Green industrial applications of ionic liquids. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  3. Wasserscheid P, Welton T (2007) In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  4. Holbrey JD, Seddon KR (1999) Clean Products Process 1:223–236

    Google Scholar 

  5. Olivier-Bourbigou H, Magna L, Morvan D (2010) Appl Catal A 373:1–56

    Article  CAS  Google Scholar 

  6. Lee SG (2006) Chem Commun 1049–1036

  7. Weingärtner H (2008) Angew Chem Int Ed Engl 47:654–670

    Article  Google Scholar 

  8. Sheldon R (2001) Chem Commun 2399–2407

  9. Welton T (2004) Coord Chem Rev 248:2459–2477

    Article  CAS  Google Scholar 

  10. Pârvulescu VI, Hardacre C (2007) Chem Rev 107:2615–2665

    Article  Google Scholar 

  11. Endres F, Abedin SZE (2002) Chem Commun 892–893

  12. Yoshizawa M, Narita A, Ohno H (2004) Aust J Chem 57:139–144

    Article  CAS  Google Scholar 

  13. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Chem Commun 1765–1766

  14. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis Jr JH, Rogers RD (2001) Chem Commun 135–136

  15. Dietz ML (2006) Sep Sci Technol 41:2047–2063

    Article  CAS  Google Scholar 

  16. Han X, Armstrong DW (2007) Acc Chem Res 40:1068–1079

    Article  Google Scholar 

  17. Kamimura H, Kubo T, Minami I, Mori S (2007) Tribol Int 40:620–625

    Article  CAS  Google Scholar 

  18. Palacio M, Bhushan B (2008) Adv Mater 20:1194–1198

    Article  CAS  Google Scholar 

  19. Hayes R, Warr GG, Atkin R (2010) Phys Chem Chem Phys 12:1709–1723

    Article  CAS  Google Scholar 

  20. MacFarlane DR, Pringle JM, Johansson KM, Forsyth SA, Forsyth M (2006) Chem Commun 1905–1917

  21. Ohno H, Fukumoto K (2007) Acc Chem Res 40:1122–1129

    Article  CAS  Google Scholar 

  22. Greaves TL, Drummond CJ (2008) Chem Rev 108:206–237

    Article  CAS  Google Scholar 

  23. Clare B, Sirwardana A, MacFarlane DR (2009) Top Curr Chem 290:1–40

    Article  CAS  Google Scholar 

  24. Pucheault M, Vaultier M (2009) Top Curr Chem 290:83–126

    Article  CAS  Google Scholar 

  25. Cole AC, Jensen JL, Ntai IJ, Tran KT, Weaver KJ, Forbes DC, Davis JH Jr (2002) J Am Chem Soc 124:5962–5963

    Article  CAS  Google Scholar 

  26. Isole T, Fukuda K, Araki Y, Ishikawa T (2001) Chem Commun 243–244

  27. Ishikawa T (2009) In: Ishikawa T (ed) Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts. Wiley-VCH, Weinheim, pp 93–144

    Google Scholar 

  28. Schmuck C (2000) Chem Eur J 6:709–718

    Article  CAS  Google Scholar 

  29. Tobey SL, Anslyn EV (2003) J Am Chem Soc 125:14807–14815

    Article  CAS  Google Scholar 

  30. Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J (2004) Angew Chem Int Ed 43:2415–2417

    Article  CAS  Google Scholar 

  31. Gao Y, Arritt SW, Twamley B, Shreeve JM (2005) Inorg Chem 44:1704–1712

    Article  CAS  Google Scholar 

  32. Li SH, Lin YJ, Xie HB, Zhang SB, Xu JN (2006) Org Lett 8:391–394

    Article  CAS  Google Scholar 

  33. Kopidakis N, Neale NR, Frank AJ (2006) J Phys Chem B 110:12485–12489

    Article  CAS  Google Scholar 

  34. Fang SH, Yang L, Wang JX, Zhang HQ, Tachibana K, Kamijima K (2009) J Power Sources 191:619–622

    Article  CAS  Google Scholar 

  35. Fang SH, Tang YF, Tai XY, Yang L, Tachibana K, Kamijimac K (2011) J Power Sources 196:1433–1441

    Article  CAS  Google Scholar 

  36. Li DM, Wang MY, Wu JF, Zhang QX, Luo YH, Yu ZX, Meng QB, Wu ZJ (2009) Langmuir 25:4808–4814

    Article  CAS  Google Scholar 

  37. Carrera GVSM, Frade RFM, Aires-de-Sousa J, Afonso CAM, Branco LC (2010) Tetrahedron 66:8785–8794

    Article  CAS  Google Scholar 

  38. De Proft F, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  39. De Proft F, Geerlings P, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  Google Scholar 

  40. Lagrost C, Gmouh S, Vaultier M, Hapiot P (2004) J Phys Chem A 108:6175–6182

    Article  CAS  Google Scholar 

  41. Dong K, Zhang SJ, Wang DX, Yao XQ (2006) J Phys Chem A 110:9775–9782

    Article  CAS  Google Scholar 

  42. Matsumoto K, Hagiwara R (2007) J Fluor Chem 128:317–331

    Article  CAS  Google Scholar 

  43. Liu XM, Song ZX, Wang HJ (2009) Struct Chem 20:509–515

    Article  CAS  Google Scholar 

  44. Liu XM, Zhang SJ, Zhou GH, Wu GW, Yuan XL, Yao XQ (2006) J Phys Chem B 110:12062–12071

    Article  CAS  Google Scholar 

  45. Liu XM, Zhou GH, Zhang SJ, Wu GW, Yao XQ (2007) J Phys Chem B 111:5658–5668

    Article  CAS  Google Scholar 

  46. Yu GR, Zhang SJ (2007) Fluid Phase Equilibria 255:86–92

    Article  CAS  Google Scholar 

  47. Klähn M, Seduraman A, Wu P (2008) J Phys Chem B 112:10989–11004

    Article  Google Scholar 

  48. Klähn M, Seduraman A, Wu P (2008) J Phys Chem B 112:13849–13861

    Article  Google Scholar 

  49. Zhao YW, Long JX, Deng FG, Liu XF, Li Z, Xia CG, Peng JJ (2009) Catal Commun 10:732–736

    Article  CAS  Google Scholar 

  50. Li HL, Yu ST, Liu FS, Xie CX, Li L (2007) Catal Commun 8:1759–1762

    Article  CAS  Google Scholar 

  51. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  54. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  55. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  56. Gordon MS (1980) Chem Phys Lett 76:163–168

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  58. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  59. Thomazeau C, Olivier-Bourbigou H, Magna L, Luts S, Gilbert B (2003) J Am Chem Soc 125:5264–5265

    Article  CAS  Google Scholar 

  60. Kalaitzis JA, de Leone PA, Quinn RJ, Healy PC (2003) Acta Cryst E59:o726–o727

    CAS  Google Scholar 

  61. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  62. Hunt PA, Kirchner B, Welton T (2006) Chem Eur J 12:6762–6775

    Article  CAS  Google Scholar 

  63. Diedenhofen M, Klamt A, Schafer KMA (2007) Phys Chem Chem Phys 9:4653–4656

    Article  CAS  Google Scholar 

  64. Verevkin SP (2008) Angew Chem Int Ed 47:5071–5074

    Article  CAS  Google Scholar 

  65. Hollóczki O, Gerhard D, Massone K, Szarvas L, Németh B, Veszprémi T, Nyulászi L (2010) New J Chem 34:3004–3009

    Article  Google Scholar 

  66. Del-Pópolo MG, Voth GA (2004) J Phys Chem B 108:1744–1752

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Funds for Distinguished Young Scholar (20625308), National Basic Research Program of China (973 Program) 2011CB201404 and West Light Foundation of The Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wang, F., Li, Z. et al. Novel guanidinium zwitterion and derived ionic liquids: physicochemical properties and DFT theoretical studies. Struct Chem 22, 1119–1130 (2011). https://doi.org/10.1007/s11224-011-9807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9807-y

Keywords

Navigation