Skip to main content
Log in

A theoretical study on the mechanism of a novel one-carbon unit transfer reaction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of one-carbon unit transfer reaction between tetrahydrofolate coenzymes model compound (e.g., benzimidazolium) and Grignard reagent has been investigated employing the DFT and B3LYP/6-31G* levels of theory. Three consecutive reactions leading to major products N,N′-dimethyl-ophenylenediamine and acetone have been proposed and discussed. For these reactions, the structure parameters, vibrational frequencies, and energies for each stationary point have been calculated, and the corresponding reaction mechanism has been given by the potential energy surface, which is drawn according to the relative energies. The calculated results show that the corresponding major products N,N′-dimethyl-ophenylenediamine and acetone are in agreement with experimental findings, which provided a new illustration and guidance for these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kompis IM, Islam K, Then RL (2005) Chem Rev 105:593–620

    Article  CAS  Google Scholar 

  2. Bieräugel H, Plemp R, Hiemstra HC, Pandit UK (1983) Tetrahedron 39:3971–3979

    Article  Google Scholar 

  3. Huizenga RH, Vawiltenburg J, Bieräugel H, Pandit UK (1991) Tetrahedron 47:4165–4174

    Article  CAS  Google Scholar 

  4. Bieräugel H, Brands KMJ, Pandit UK (1988) Heterocycles 27:1589–1593

    Article  Google Scholar 

  5. Kulkowit S, McKervey MA (1978) J Chem Soc Chem Commun 23:1069–1070

    Article  Google Scholar 

  6. Meyers AI, Collingt EW (1970) J Am Chem 92:6676–6678

    Article  CAS  Google Scholar 

  7. Jiang JL, Shi Z (1998) Synth Commun 28:4137–4142

    Article  CAS  Google Scholar 

  8. Shi Z, Gu H (1997) Synth Commun 27:2789–2791

    Article  CAS  Google Scholar 

  9. Shi Z, Gu H (1997) Synth Commun 27:2701–2707

    Article  CAS  Google Scholar 

  10. Guo Y, Shi Z (2004) Synth Commun 34:3183–3189

    Article  CAS  Google Scholar 

  11. Guo Y, Wu XL, Li JL, Xu RQ, Shi Z (2005) Synth Commun 35:2489–2494

    Article  CAS  Google Scholar 

  12. Bai YJ, Lu J, Shi Z, Yang BQ (2001) Synlett 4:544–546

    Google Scholar 

  13. Li JL, Yin WT, Zhang J, Guo Y, Wu XL, Bai YJ, Shi Z (2008) Chem J Chinese 29:100–103

    CAS  Google Scholar 

  14. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  15. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) Int J Quantum Chem 44:319–331

    Article  Google Scholar 

  16. Riemer-Sorensen S, Zioutas K, Hansen SH, Pedersen K, Dahle K, Liolios A (2007) Phys Rev Lett 8:1313011–1313014

    Google Scholar 

  17. Klontzas E, Mavrandonakis A, Tylianakis E, Froudakis GE (2008) Nano Lett 8:1572–1576

    Article  Google Scholar 

  18. Zhang RQ, Wong NB, Lee ST, Zhu RS, Han KL (2000) Chem Phys Lett 319:213–219

    Article  CAS  Google Scholar 

  19. Garrett ER, Gurkan T (1979) J Pharm Sci 68:26–32

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN03 Revision B.03. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  21. Binderbauer MW, Guo HY, Tuszewski M, Putvinski S, Sevier L, Barnes D (2010) Phys Rev Lett 105:0450031–0450034

    Article  Google Scholar 

  22. Steckler R, Truhlar DG (1990) J Chem Phys 93:6570–6577

    Article  CAS  Google Scholar 

  23. Liu YP, Lu DH, Lynch GC, Truong TN, Gonzalezlafont A, Truhlar DG (1993) Abstr Am Chem Soc 206:244

    Google Scholar 

  24. Schenter GK, Garrett BC, Truhlar DG (2003) J Chem Phys 119:5828–5833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Zhu or Yongning Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Zhang, J., Wen, Z. et al. A theoretical study on the mechanism of a novel one-carbon unit transfer reaction. Struct Chem 22, 901–907 (2011). https://doi.org/10.1007/s11224-011-9776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9776-1

Keywords

Navigation