Skip to main content
Log in

Explorations of the nature of the coupling interactions between vitamin C and methylglyoxal: a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

As the first step toward understanding the augment role of vitamin C (Vc) for the anticancer effect of methylglyoxal (MG), the nature of the coupling interactions between Vc and MG has been systematically investigated at the B3LYP/6-311++G** level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, and energy decomposition analysis (EDA). The possible stable complexes have been located on their potential energy surface (PES). Most of them are characterized by one or two intermolecular H-bonds with the binding energies varying from −11.1 to −2.0 kcal/mol. AIM analyses suggest that all the intermolecular H-bonds have been predominated by the electrostatic interaction. A good linear correlation between the intermolecular H-bond distance and the electron density as well as its Laplacian at the bond critical point of the intermolecular H-bond has been observed. Depending on the selected coupling modes between Vc and MG, the origin of the blue-shifts of the stretching vibrational frequencies of different C–H bonds has been elucidated. Additionally, the inherent reason for the positive role of Vc in the anticancer process for MG has been verified through the investigation of the one-electron oxidation behaviors of the most stable complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davies MB, Austin J, Partridge DA (1991) Vitamin C: its chemistry and biochemistry. RSC Publications, London

    Google Scholar 

  2. Bankson DD, Kestin M, Rifai N (1993) Clin Lab Med 13:463

    CAS  Google Scholar 

  3. Ribeiro DA, Buttros JB, Oshima CTF, Bergamaschi CT, Campos RR (2009) J Mol Histol 40:99

    Article  CAS  Google Scholar 

  4. van Acker SABE, Koymans LMH, Bast A (1993) Free Radic Biol Med 15:311

    Article  Google Scholar 

  5. Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM (1986) Adv Free Radic Biol Med 2:419

    Article  CAS  Google Scholar 

  6. Fraga CG, Motchink PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN (1991) Proc Natl Acad Sci USA 88:11003

    Article  CAS  Google Scholar 

  7. Lutsenko EA, Carcamo JM, Golde DW (2002) J Biol Chem 227:16895

    Article  Google Scholar 

  8. Ghosh M, Talukdar D, Ghosh S, Bhattacharyya N, Ray M, Ray S (2006) Toxicol Appl Pharm 212:45

    Article  CAS  Google Scholar 

  9. Halder J, Ray M, Ray S (1993) Int J Cancer 54:443

    Article  CAS  Google Scholar 

  10. Biswas S, Ray M, Misra S, Dutta DP, Ray S (1997) Biochem J 323:343

    CAS  Google Scholar 

  11. Ray M, Ghosh S, Kar M, Dutta S, Ray S (2001) Indian J Phys 75B:73

    CAS  Google Scholar 

  12. Banerjee D, Koll A, Filarowski A, Bhattacharyya SP, Mukherjee S (2004) Spectrochim Acta A 60:1523

    Article  CAS  Google Scholar 

  13. Banerjee D, Koll A, Filarowski A, Bhattacharyya SP, Mukherjee S (2005) Indian J Chem A 44:451

    Google Scholar 

  14. Rucker RB, Suttie JW, McCormick DB, Machlin LJ (2001) Handbook of vitamins. Marcel Dekker, New York

    Google Scholar 

  15. Naidu KA (2003) Nutr J 2:7

    Article  Google Scholar 

  16. Costanzo F, Sulpizi M, Vandevondele J, Della Valle RG, Sprik M (2007) Mol Phys 105:17

    Article  CAS  Google Scholar 

  17. Allen RN, Shukla MK, Reed D, Leszczynski J (2006) Int J Quantum Chem 106:2934

    Article  CAS  Google Scholar 

  18. Allen RN, Shukla MK, Leszczynski J (2006) Int J Quantum Chem 106:2366

    Article  CAS  Google Scholar 

  19. O’Malley PJ (2001) J Phys Chem B 105:11290

    Article  Google Scholar 

  20. Juhasza JR, Pisterzia LF, Gasparroa DM, Almeidaa DRP, Csizmadia IG (2003) J Mol Struc (Theochem) 666–667:401

    Article  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  23. Li P, Shen ZT, Wang WH, Ma ZY, Bi SW, Sun HT, Bu YX (2010) Phys Chem Chem Phys 12:5256

    Article  CAS  Google Scholar 

  24. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  25. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  26. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  27. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University, New York

    Google Scholar 

  28. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

  29. Jenkins S, Morrison I (2000) Chem Phys Lett 317:97

    Article  CAS  Google Scholar 

  30. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835

    Article  CAS  Google Scholar 

  31. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  32. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  33. Morokuma K (1971) J Chem Phys 55:1236

    Article  CAS  Google Scholar 

  34. Morokuma K (1977) Acc Chem Res 10:294

    Article  CAS  Google Scholar 

  35. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1

    CAS  Google Scholar 

  36. Ziegler T, Rauk A (1979) Inorg Chem 18:1558

    Article  CAS  Google Scholar 

  37. Ziegler T, Rauk A (1979) Inorg Chem 18:1755

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  39. te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931

    Article  CAS  Google Scholar 

  40. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391

    Article  Google Scholar 

  41. ADF2007.01, SCM, Theoretical chemistry. Vrije Universiteit, Amsterdam, http://www.scm.com

  42. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  43. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  44. Hobza P, Havlas Z (2000) Chem Rev 100:4253

    Article  CAS  Google Scholar 

  45. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973

    Article  CAS  Google Scholar 

  46. Yang Y, Zhang W, Pei S, Shao J, Huang W, Gao X (2006) Sci China Ser B 36:218

    Google Scholar 

  47. Atkins PW (1998) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  48. Zhurova EA, Tsirelson VG, Stash AI, Pinkerton AA (2002) J Am Chem Soc 124:4574

    Article  CAS  Google Scholar 

  49. Zhurova EA, Zhurov VV, Pinkerton AA (2007) J Am Chem Soc 129:13887

    Article  CAS  Google Scholar 

  50. Zhurova EA, Stash AI, Tsirelson VG, Zhurov VV, Bartashevich EV, Potemkin VA, Pinkerton AA (2006) J Am Chem Soc 128:14728

    Article  CAS  Google Scholar 

  51. Klapötke TM, Mayer P, Schulz A, Weigand JJ (2005) J Am Chem Soc 127:2032

    Article  Google Scholar 

  52. Gibbs GV, Downs RT, Cox DF, Ross NL, Boisen MB Jr, Rosso KM (2008) J Phys Chem A 112:3693

    Article  CAS  Google Scholar 

  53. Bent HA (1961) Chem Rev 61:275

    Article  CAS  Google Scholar 

  54. Miller CE, Francisco JS (2001) J Am Chem Soc 123:10387

    Article  CAS  Google Scholar 

  55. Gora RW, Grabowski SJ, Leszczynski J (2005) J Phys Chem A 109:6397

    Article  CAS  Google Scholar 

  56. Torrent-Sucarrat M, Anglada JM (2006) J Phys Chem A 110:9718

    Article  CAS  Google Scholar 

  57. Guerra CF, Bickelhaupt FM, Snijders JG, Baerends EJ (1999) Chem Eur J 5:3581

    Article  CAS  Google Scholar 

  58. Jonas V, Frenking G, Reetz MT (1994) J Am Chem Soc 116:8141

    Article  Google Scholar 

  59. Anane H, Boutalib A, Nebot-Gil I, Tomás F (1998) J Phys Chem A 102:7070

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by NSFC (21003082), NSF (ZR2009BM037) of Shandong Province, and the Scientific Research Foundation of Qufu Normal University (XJ200807). Supports from the Project of Shandong Province Higher Educational Science and Technology Program (J09LB01, J09LB17), the Foundation for Outstanding Young Scientist in Shandong Province (BS2009HZ014, BS2010NJ009), the China Postdoctoral Science Foundation funded project (20100481254), and the Special Fund Project for Post Doctoral Innovation of Shandong Province (201002030) are also acknowledged. We are grateful to Professor Zexing Cao for the EDA calculations as well as the reviewers for their insightful suggestions to improve the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Li or Weihua Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 1979 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Zhai, Y., Wang, W. et al. Explorations of the nature of the coupling interactions between vitamin C and methylglyoxal: a DFT study. Struct Chem 22, 783–793 (2011). https://doi.org/10.1007/s11224-011-9756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9756-5

Keywords

Navigation