Skip to main content
Log in

A DFT quantum mechanical study of 3-hydroxy-4-pyrone and 3-hydroxy-4-pyridinone based oxidovanadium(IV) complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Oxidovanadium(IV) complexes have revealed interesting pharmacological properties which make them promising agents in the treatment of diabetes mellitus. A computational study of 17 complexes of oxidovanadium(IV) with 3-hydroxy-4-pyrone- and 3-hydroxy-4-pyridinone-based ligands was carried out at the density functional theory level. The geometry, electronic structure, and vibration modes at the metallic center were predicted, and their dependence on the nature of the ligand was evaluated. Slight distinctions between both classes of compounds were observed, namely the higher value of dipole moments and the smaller HOMO–LUMO energy gap for the 3-hydroxy-4-pyridinone-based complexes. The modes of vibration at the metallic coordination region do not vary significantly throughout the whole series, and a particular corrective scaling factor is proposed for the V=O stretching mode of this type of oxidovanadium(IV) complexes. The results presented here are of particular relevance since it was not yet possible to obtain X-ray diffraction data for the oxidovanadium(IV) complexes of 3-hydroxy-4-pyridinones, and also as the influence of the solvent, in particular the local interaction at the sixth coordination position, was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yeh GY, Eisenberg DM, Kaptchuck TJ, Phillips RS (2003) Diabetes Care 26:1277–1294

    Article  CAS  Google Scholar 

  2. Sakurai H, Yasui H, Adachi Y (2003) Expert Opin Investig Drugs 12:1189–1203

    Article  CAS  Google Scholar 

  3. Thompson KH, Orvig C (2001) Coord Chem Rev 1033:219–221

    Google Scholar 

  4. Shechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D (2003) Coord Chem Rev 237:3–11

    Article  CAS  Google Scholar 

  5. Saha TK, Yoshikawa Y, Yasui H, Sakurai H (2006) Bull Chem Soc Jpn 79:1191–1200

    Article  CAS  Google Scholar 

  6. Zborowski K, Grybos R, Proniewicz M (2005) Inorg Chem Commun 8:76–78

    Article  CAS  Google Scholar 

  7. Rangel M, Amorim MJ, Nunes A, Leite A, Pereira E, de Castro B, Sousa C, Yoshikawa Y, Sakuri H (2009) J Inorg Biochem 103:496–502

    Article  CAS  Google Scholar 

  8. Rangel M, Leite A, Amorim MJ, Garriba E, Micera G, Lodyga-Chruscinska E (2006) Inorg Chem 45:8086–8097

    Article  CAS  Google Scholar 

  9. Burgess J, de Castro B, Oliveira C, Rangel M, Schlindwein W (1997) Polyhedron 16:789–794

    Article  CAS  Google Scholar 

  10. Caravan P, Gelmini L, Glover N, Herring GF, Li H, McNeill JH, Rettig SJ, Setyawati IA, Shuter E, Sun Y, Tracey AS, Yuen VG, Orvig C (1995) J Am Chem Soc 117:12759–12770

    Article  Google Scholar 

  11. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757–10816

    Article  CAS  Google Scholar 

  12. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Becke AD (1988) Phys Rev 38:3098–3100

    Article  CAS  Google Scholar 

  14. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  15. Stevens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Chem Phys 98:11623–11627

    Article  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc., Wallingford, CT

  17. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

  18. Flükiger P, Lüthi HP, Portmann S, Weber J (2003) MOLEKEL 4.3: Molecular Visualization Software, Swiss Center for Scientific Computing, Manno

  19. Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B 101:10506–10517

    Article  CAS  Google Scholar 

  20. Mennucci B, Cammi R, Tomasi J (1998) J Chem Phys 109:2798–2807

    Article  CAS  Google Scholar 

  21. Mennucci B, Cammi R, Tomasi J (1999) J Chem Phys 110:6858–6870

    Article  CAS  Google Scholar 

  22. Barone V, Cossi M, Tomassi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  23. Chong DP, Gritsenko OV, Baerends EJ (2002) J Chem Phys 116:1760–1772

    Article  CAS  Google Scholar 

  24. Stowasser R, Hoffman R (1999) J Am Chem Soc 121:3414–3420

    Article  CAS  Google Scholar 

  25. Pearson RG (1986) Proc Natl Acad Sci USA 83:8440–8441

    Article  CAS  Google Scholar 

  26. Jarrais B, Pereira C, Silva AR, Carvalho AP, Pires J, Freire C (2009) Polyhedron 28:994–1000

    Article  CAS  Google Scholar 

  27. Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, Zhou Y, Orvig C (1997) J Inorg Biochem 68:109–116

    Article  CAS  Google Scholar 

  28. Magalhães AL, Soares Pinto AS (2003) Theor Chem Acc 110:70–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandre L. Magalhães or Maria Rangel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 901 kb)

Supplementary material 2 (PDF 901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biernacki, K., Magalhães, A.L., Freire, C. et al. A DFT quantum mechanical study of 3-hydroxy-4-pyrone and 3-hydroxy-4-pyridinone based oxidovanadium(IV) complexes. Struct Chem 22, 697–706 (2011). https://doi.org/10.1007/s11224-011-9748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9748-5

Keywords

Navigation