Skip to main content
Log in

Silver coordination polymers with remarkably high packing coefficients

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Silver meso- and rac-tartrate and silver squarate have been synthesized, and the crystal structure of a new polymorph of the latter is reported. Three reaction products of these silver salts with pyrazine have been obtained and structurally characterized: From silver squarate, a chain polymer with linear coordination of Ag(I) by two pyrazine ligands is formed, whereas the silver tartrates yield solids in which the inner coordination sites around the metal are only partially occupied by N donors; in contrast to expectation, oxygen coordination prevails. All the four new Ag(I) coordination compounds reported show high packing coefficients in the range between 0.789 and 0.885. In order to put these results into a meaningful context, packing coefficients for the crystal structures of almost 30,000 compounds retrieved from the Cambridge Structural Database have been determined. Tartrates pack significantly closer than pyrazine complexes or metal-containing compounds in general. The exceptionally high packing coefficient of the new polymorph of silver squarate is due to stacking of anions and concomitant Ag···Ag contacts, both along the shortest lattice parameter which amounts to only 3.3990(9) Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Janiak C (2003) Dalton Trans 2781

  2. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem 116:2388

    Article  Google Scholar 

  3. Maspoch D, Ruiz-Molina D, Veciana J (2007) Chem Soc Rev 36:770

    Article  CAS  Google Scholar 

  4. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    Article  CAS  Google Scholar 

  5. Carlucci L, Ciani G, Proserpio DM (2003) Coord Chem Rev 246:247

    Article  CAS  Google Scholar 

  6. Braga D, Brammer L, Champness NR (2005) CrystEngComm 7:1

    Article  CAS  Google Scholar 

  7. Kitagawa S, Matsuda R (2007) Coord Chem Rev 251:2490

    Article  CAS  Google Scholar 

  8. Englert U (2009) Coord Chem Rev online doi:10.1016/j.ccr.2009.08.007

  9. Hu C, Englert U (2005) Angew Chem Int Ed 44:2281

    Article  CAS  Google Scholar 

  10. Hu C, Englert U (2006) Angew Chem Int Ed 45:3457

    Article  CAS  Google Scholar 

  11. Vittal JJ (2007) Coord Chem Rev 251:1781

    Article  CAS  Google Scholar 

  12. Vreshch VD, Chernega AN, Howard JAK, Sieler J, Domasevitch KV (2003) Dalton Trans 1707

  13. Vreshch VD, Lysenko AB, Chernega AN, Howard JAK, Krautscheid H, Sieler J, Domasevitch KV (2004) Dalton Trans 2899

  14. Margraf G, Pattacini R, Messaoudi A, Braunstein P (2006) Chem Commun 3098

  15. Burrows AD, Cassar K, Mahon MF, Warren JE (2007) Dalton Trans 2499

  16. Kondracka M, Englert U (2008) Inorg Chem 47:10246

    Article  CAS  Google Scholar 

  17. Khlobystov AN, Blake AJ, Champness NR, Lemenovskii DA, Majouga AG, Zyk NV, Schröder M (2001) Coord Chem Rev 222:155

    Article  CAS  Google Scholar 

  18. Liu X, Guo G-C, Fu M-L, Liu X-H, Wang M-S, Huang J-S (2006) Inorg Chem 45:3679

    Article  CAS  Google Scholar 

  19. Dobrzanska L, Raubenheimer HG, Barbour L (2005) Chem Commun 5050

  20. Feazell RP, Carson CE, Klausmeyer KK (2006) Inorg Chem 45:2635

    Article  CAS  Google Scholar 

  21. Chu Q, Swenson DC, MacGillivray LR (2005) Angew Chem Int Ed 44:3569

    Article  CAS  Google Scholar 

  22. Omary MA, Webb TR, Assefa Z, Shankle GE, Patterson HH (1998) Inorg Chem 37:1380

    Article  CAS  Google Scholar 

  23. Park BI, Lee JW, Lee Y-A, Hong J, Jung O-S (2005) Bull Chem Soc Jpn 78:1624

    Article  CAS  Google Scholar 

  24. Pyykkö P (1997) Chem Rev 97:597

    Article  Google Scholar 

  25. Robin AY, Fromm KM (2006) Coord Chem Rev 250:2127

    Article  CAS  Google Scholar 

  26. Chen C-L, Kang B-S, Su C-Y (2006) Aust J Chem 59:3

    Article  CAS  Google Scholar 

  27. Silver (I) – a Crystal Engineering Renaissance (2006) Aust J Chem 59(1)

  28. Kalf I, Braun M, Wang Y, Englert U (2006) CrystEngComm 8:916

    Article  CAS  Google Scholar 

  29. Zhu H-L, Sun X-J, Wang X-J, Wang D-Q (2003) Z Kristallogr-New Cryst Struct 218:305

    CAS  Google Scholar 

  30. Usman A, Fun HK, Chantrapromma S, Zhu HL, Wang XJ (2003) Acta Crystallogr Sect C 59:m97

    Article  Google Scholar 

  31. Lee J-C, Takahashi H, Matsui Y (2005) Z Kristallogr-New Cryst Struct 220:493

    CAS  Google Scholar 

  32. Wang Y (2009) Doctoral dissertation, RWTH Aachen University (submitted)

  33. Wang Y, Englert U (2007) Eur J Inorg Chem 5623

  34. Allen F (2002) Acta Crystallogr Sect B 58:380

    Article  Google Scholar 

  35. Englert U, Calderazzo F, Pampaloni G (1997) Struct Chem 8:237

    Article  CAS  Google Scholar 

  36. Zheng X, Wang B, Englert U, Herberich GE (2001) Inorg Chem 40:3117

    Article  CAS  Google Scholar 

  37. Skovsgaard S, Bond AD (2009) CrystEngComm 11:444

    Article  CAS  Google Scholar 

  38. Spek AL (2003) J Appl Cryst 36:7

    Article  CAS  Google Scholar 

  39. Sheldrick GM (1996) SADABS, Program for empirical absorption correction of area detector data. University of Göttingen

  40. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112

    Article  Google Scholar 

  41. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  42. Batsanov SS (1995) Izv Akad Nauk Ser Khim 24

  43. Robl C, Weiss A (1987) Z Anorg Allg Chem 546:161

    Article  CAS  Google Scholar 

  44. Serb M (2009) Doctoral dissertation, University Politehnica of Bucharest and RWTH Aachen University

  45. Shorrock CJ, Xue B-Y, Kim PB, Batchelor RJ, Patrick BO, Leznoff DB (2002) Inorg Chem 41:6743

    Article  CAS  Google Scholar 

  46. Blake AJ, Champness NR, Hubberstey P, Li W-S, Withersby MA, Schröder M (1999) Coord Chem Rev 183:117

    Article  CAS  Google Scholar 

  47. Robin AY, Sagué JL, Fromm KM (2006) CrystEngComm 8:403

    Article  CAS  Google Scholar 

  48. Leiserowitz L (1976) Acta Crystallogr Sect B 32:775

    Article  Google Scholar 

  49. Desiraju GR (1995) Angew Chem 107:2541

    Article  Google Scholar 

  50. Englert U, Ganter B, Wagner T, Kläui W (1998) Z Anorg Allg Chem 624:970

    Article  CAS  Google Scholar 

  51. Kitaigorodskii AI (1961) Organic chemical crystallography, Consultant’s Bureau, New York, p 107

  52. Yufit DS, Price DJ, Howard JAK, Gutschke SOH, Powell AK, Wood PT (1999) Chem Commun 1561

  53. Trombe J-C, Sabadie L, Millet P (2002) Solid State Sciences 4:1209

    Article  CAS  Google Scholar 

  54. Dinnebier RE, Nuss H, Jansen M (2005) Z Kristallogr 220:954

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by DAAD is gratefully acknowledged. The authors wish to thank Dr. Calmuschi-Cula for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulli Englert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Şerb, M. & Englert, U. Silver coordination polymers with remarkably high packing coefficients. Struct Chem 21, 203–211 (2010). https://doi.org/10.1007/s11224-009-9564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9564-3

Keywords

Navigation