Skip to main content
Log in

Theoretical studies of five-membered ring ketene acetals

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Cyclic ketene acetals are a class of organic molecules characterized by a nucleophilic exo-methylene carbon attached to a carbon with two adjacent O, N, or S atoms. We have carried out a systematic computational study of a series of five-membered cyclic acetals like 2-methylene-1,3-dioxolane and its OS, SS, NO, NS, and NN analogs as well as all the protonated species. The calculations were performed at the MP2 level using a triple zeta plus polarization basis set. The nucleophilicity was discussed in terms of geometrical factors, calculated atomic charges, calculated chemical shifts, and proton affinities. All the six neutral species were strong nucleophiles. The NN analog was predicted to be the strongest and the SS analog the weakest nucleophile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McElvain SM, Degginger ER, Behun JD (1954) J Am Chem Soc 76:5736

    Article  CAS  Google Scholar 

  2. Fukuda H, Endo T (1988) Tetrahedron Lett 29(19):2327

    Article  CAS  Google Scholar 

  3. Elliott MC, Monk AE, Kruiswijk E, Hibbs DE, Jenkins RL, Jones DV (1998) Synlett 9:1379

    Google Scholar 

  4. Meyers AI, Nazarenko N (1972) J Am Chem Soc 94:3243

    Article  CAS  Google Scholar 

  5. Klemm E, Letsch J (1994) J Polym Sci Part A: Polym Chem 32:2867

    Article  Google Scholar 

  6. Bellus D (1979) J Org Chem 44:1208

    Article  CAS  Google Scholar 

  7. Zhou A, Pittman CU Jr (2006) J Comb Chem 8(2):262

    Article  CAS  Google Scholar 

  8. Zhou A, Pittman CU Jr (2006) Synthesis 1:37

    Article  Google Scholar 

  9. Zhou A, Cao L, Li H, Liu Z, Pittman CU Jr (2006) Synlett 2:201

    Article  Google Scholar 

  10. Zhou A, Pittman CU Jr (2005) Tetrahedron Lett 46:2045

    Article  CAS  Google Scholar 

  11. Zhou A, Pittman CU Jr (2004) Tetrahedron Lett 45:8899

    Article  CAS  Google Scholar 

  12. Zhou A, Cao L, Li H, Liu Z, Cho H, Henry WP, Pittman CU Jr (2006) Tetrahedron 62:4188

    Article  CAS  Google Scholar 

  13. Zhou A, Pittman CU Jr (2005) Tetrahedron Lett 46:3801

    Article  CAS  Google Scholar 

  14. Zhou A, Njogu MN, Pittman CU Jr (2006) Tetrahedron 62:4093

    Article  CAS  Google Scholar 

  15. Meerwein H, Hinz G, Hoffman D, Konig E, Pfeil E (1937) J Prakt Chem 147:257 1939, 154, 83

    Article  CAS  Google Scholar 

  16. Meerwein H (1955) Angew Chem 67:374

    Article  CAS  Google Scholar 

  17. Meerwein H, Wunderlich K (1957) Angew Chem 69:481

    Article  CAS  Google Scholar 

  18. Meerwein H, Allendorfer H, Beekmann P, Kunert F, Morschel H, Pawellek H, Wunderlich K (1958) Angew Chem 70:211, 630

    Google Scholar 

  19. Meerwein H, Borner P, Fuchs O, Sasse HJ, Schrodt H, Spille J (1956) Chem Ber 89:2060

    Article  CAS  Google Scholar 

  20. Meerwein H, Hederich V, Wunderlich K (1958) Arch Pharm 291:541

    Article  CAS  Google Scholar 

  21. Meerwein H, Hederich V, Morschel J, Wunerlich K (1960) Justus Liebigs Ann Chem 635:1

    Article  CAS  Google Scholar 

  22. Meerwein H, Bodenbrenner K, Borner P, Kunert F, Wunderlich K (1968) Justus Liebigs Ann Chem 632:38

    Article  Google Scholar 

  23. Winstein S, Buckles RE (1942) J Am Chem Soc 64:2780, 2787

    Google Scholar 

  24. Winstein S, Hess HV, Buckles RE (1942) J Am Chem Soc 64:2769

    Article  Google Scholar 

  25. Winstein S, Buckles RE (1943) J Am Chem Soc 65:613

    Article  CAS  Google Scholar 

  26. Winstein S, Seymour D (1946) J Am Chem Soc 68:119

    Article  CAS  Google Scholar 

  27. Winstein S, Grunwald E, Ingraham LL (1948) J Am Chem Soc 70:821

    Article  CAS  Google Scholar 

  28. Winstein S, Hanson C, Grunwald E (1948) J Am Chem Soc 70:812

    Article  CAS  Google Scholar 

  29. Winstein S, Grunwald E, Buckles RE, Hanson C (1948) J Am Chem Soc 70:816

    Article  CAS  Google Scholar 

  30. Lemieux RU, Brice C, Huber G (1955) Can J Chem 33:134

    Article  CAS  Google Scholar 

  31. Lemieux RU, Huber G (1955) Can J Chem 33:128

    Article  CAS  Google Scholar 

  32. Capon B (1967) Chem Commun 21

  33. Hedgley EJ, Fletcher HG Jr (1963) J Am Chem Soc 85:1615

    Article  CAS  Google Scholar 

  34. Hedgley EJ, Fletcher HG Jr (1964) J Am Chem Soc 86:1576, 1583

    Google Scholar 

  35. Pederson C (1963) Acta Chem Scand 17:1269

    Article  Google Scholar 

  36. Pederson C (1968) Acta Chem Scand 22:1888

    Article  Google Scholar 

  37. Hanessian S (1966) Carbohydr Res 2:86

    Article  CAS  Google Scholar 

  38. Hanessian S, Plessas NR (1969) J Org Chem 34:1035, 1045, 1053

    Google Scholar 

  39. Hart H, Tomalia DA (1967) Tetrahedron Lett 1347

  40. Tomalia DA, Hart H (1966) Tetrahedron Lett 3383:3389

    Article  Google Scholar 

  41. Pittman CU Jr, McManus SP (1969) Tetrahedron Lett 339

  42. Taft RW, Martin RH, Lampe FW (1965) J Am Chem Soc 87:2490

    Article  CAS  Google Scholar 

  43. Martin RH, Lampe FW, Taft RW (1966) J Am Chem Soc 88:1353

    Article  CAS  Google Scholar 

  44. Larsen JW, Ewing S (1971) J Am Chem Soc 93:5107

    Article  CAS  Google Scholar 

  45. Larsen JW, Ewing S (1970) Tetrahedron Lett 539

  46. Pittman CU Jr, McManus SP, Larsen JW (1972) Chem Rev 72(4):357–438

    Article  CAS  Google Scholar 

  47. Park J, Yokozawa T, Endo T (1993) J Polym Sci Polym Chem Ed 31:1083, 1141

    Google Scholar 

  48. Zhu PC, Pittman CU Jr (1996) J Polym Sci Polym Chem Ed 34:73,169

    Google Scholar 

  49. Zhu PC, Liu J, Lin J, Pittman CU Jr (1996) J Polym Sci Polym Chem Ed 34:2195

    Article  CAS  Google Scholar 

  50. Pittman CU Jr, Wu Z, Zhu PC (1997) J Polym Sci Part A Polym Chem Ed 35:485

    Article  Google Scholar 

  51. Wu Z, Cao L, Pittman CU Jr (1998) J Polym Sci Part A Polym Chem Ed 36:861

    Article  CAS  Google Scholar 

  52. Wu Z, Cao L, Pittman CU Jr (1998) J Rec Res Dev Polym Sci 2:467–484

    CAS  Google Scholar 

  53. Pople JA, Beveridge DL, Bobosh PA (1967) J Chem Phys 47:2026

    Article  CAS  Google Scholar 

  54. Pittman CU Jr, Patterson TB Jr, Kispert LD (1973) J Org Chem 38:471

    Article  CAS  Google Scholar 

  55. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  56. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  57. Frisch MJ, Pople JA (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  58. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6769

    Article  Google Scholar 

  59. Baker J, Wolinski K, Malagoli M, Kinghorn D, Wolinski P, Magyarfalvi G, Saebo S, Janowski T, Pulay P (2009) J Comput Chem 30:317

    Article  CAS  Google Scholar 

  60. Parallel Quantum Solutions, 2013 Green Acres Road, Fayetteville, Arkansas, 72703

  61. Ye G (2008) Ph. D. Dissertation, Mississippi State University

  62. Jolly WL (1991) Modern inorganic chemistry, 2nd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svein Saebø.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beard, D.J., Pace, C.R., Pittman, C.U. et al. Theoretical studies of five-membered ring ketene acetals. Struct Chem 20, 961–967 (2009). https://doi.org/10.1007/s11224-009-9496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9496-y

Keywords

Navigation