Skip to main content
Log in

Three new coordination complexes of cobalt(III), manganese(II), and copper(II) with N,N,O-donor hydrazone ligands: syntheses and structural characterizations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Three new coordination complexes, 2{[Co(L1)2]ClO4} · 0.5CH3OH (1), [Mn(L2)2] (2), and [Cu(HL2)(L2)]ClO4 · 2H2O (3) have been synthesized from two tridentate N,N,O-donor hydrazone ligands HL1, 2-acetylpyridine-salicyloylhydrazone, and HL2, 2-benzoylpyridine-salicyloylhydrazone, respectively and thoroughly characterized by elemental analysis, FT-IR, UV–Vis, electrochemical, and room temperature magnetic susceptibility measurements. Structures of the complexes have been unequivocally established by single crystal X-ray diffraction technique. Structural analysis reveals that 1 consists of two chemically similar but crystallographically independent cationic [Co(L1)2]+ units and 2 consists of a neutral [Mn(L2)2] molecule while 3 consists of a cationic [Cu(HL2)(L2)]+ unit. Metal ions display distorted octahedral geometry in 1 and 2 while in 3 it shows a distorted square pyramidal geometry. Ligand conformations around the metal ions are stabilized by the presence of intra-ligand hydrogen bonding in all the complexes. Structure of 3 reveals that a perchlorate ion linked to the complex by hydrogen bonding via a water molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sousa A, Bermejo MR, Fondo M, Ana G-D, Antonio S-P, Piro O (2001) New J Chem 25:647. doi:10.1039/b008932j

    Article  CAS  Google Scholar 

  2. Sen S, Talukder P, Dey SK, Mitra S, Rosair GM, Hughes DL, Yap GPA, Pilet G, Gramlich V, Matsushita T (2006) Dalton Trans 1758

  3. Pouralimardan O, Chamayou AC, Janiak C, Monfared HH (2007) Inorg Chim Acta 360:1599. doi:10.1016/j.ica.2006.08.056

    Article  CAS  Google Scholar 

  4. Suez IHA, Pehkonen SO, Hoffmann MR (1994) Sci Technol 28:2080. doi:10.1021/es00061a016

    Article  Google Scholar 

  5. Terra LH, Areias AMC, Gaubeur I, Suez-Iha MEV (1999) Spectrosc Lett 32:257. doi:10.1080/00387019909349981

    Article  CAS  Google Scholar 

  6. Fujita E, Brunschwig BS, Ogata T, Yanagida S (1994) Coord Chem Rev 132:195. doi:10.1016/0010-8545(94)80040-5

    Article  CAS  Google Scholar 

  7. Kimura E, Wada S, Shionoya M, Okazaki Y (1994) Inorg Chem 33:770. doi:10.1021/ic00082a025

    Article  CAS  Google Scholar 

  8. Kogan VA, Zelentsov VV, Larin GM, Lukov VV (1990) Kompletsky Perekhodnykh Metallovs Gidrazonami. Nauka, Moskva

    Google Scholar 

  9. Grekov AP (1996) Organicheskya Khimia Hirdazina. Tehnika, Kiev

  10. Patai S (1970) The chemistry of carbon–nitrogen double bond. Interscience, New York

    Google Scholar 

  11. Sonar VN, Crooks PA (2009) J Enzym Inhib Med Chem 24:117. doi:10.1080/14756360801915526

    Article  CAS  Google Scholar 

  12. Gurkok G, Altanlar N, Suzen S (2009) Chemotherapy 55:15. doi:10.1159/000166999

    Article  CAS  Google Scholar 

  13. Rollas S, Küçükgüzel ŞG (2007) Molecules 12:1910. doi:10.3390/12081910

    Article  CAS  Google Scholar 

  14. Galiz JC, Rub JC, Edger J (1955) Nature 34:176

    Google Scholar 

  15. Iskander MF, Zayan SE, Khalifa MA, Elsayed L (1974) J Inorg Nucl Chem 36:556

    Article  Google Scholar 

  16. Banerjee S, Ray A, Sen S, Mitra S, Hughes DL, Butcher RJ, Batten SR, Turner DR (2008) Inorg Chim Acta 361:2692. doi:10.1016/j.ica.2008.01.019

    Article  CAS  Google Scholar 

  17. Banerjee S, Sen S, Basak S, Mitra S, Hughes DL, Desplanches C (2008) Inorg Chim Acta 361:2707. doi:10.1016/j.ica.2008.01.020

    Article  CAS  Google Scholar 

  18. Sen S, Mitra S, Hughes DL, Rosair GM, Desplanches C (2007) Inorg Chim Acta 360:4085. doi:10.1016/j.ica.2007.05.034

    Article  CAS  Google Scholar 

  19. Samanta B, Chakraborty J, Shit S, Batten SR, Jensen P, Masuda JD, Mitra S (2007) Inorg Chim Acta 360:2471. doi:10.1016/j.ica.2006.12.019

    Article  CAS  Google Scholar 

  20. Sen S, Mitra S, Hughes DL, Rosair GM, Desplanches C (2007) Polyhedron 26:1740. doi:10.1016/j.poly.2006.12.015

    Article  CAS  Google Scholar 

  21. Sen S, Choudhury CR, Talukder P, Mitra S, Westerhausen M, Kneifel AN, Desplanches C, Daro N, Sutter J-P (2006) Polyhedron 25:1271. doi:10.1016/j.poly.2005.09.008

    Article  CAS  Google Scholar 

  22. Sen S, Talukder P, Rosair GM, Mitra S (2005) Struct Chem 16:605. doi:10.1007/s11224-005-7572-5

    Article  CAS  Google Scholar 

  23. Ray A, Banerjee S, Sen S, Butcher RJ, Rosair GM, Garland MT, Mitra S (2008) Struct Chem 19:209. doi:10.1007/s11224-007-9274-7

    Article  CAS  Google Scholar 

  24. Ray A, Banerjee S, Butcher RJ, Desplanches C, Mitra S (2008) Polyhedron 27:2409. doi:10.1016/j.poly.2008.04.018

    Article  CAS  Google Scholar 

  25. Dinda R, Sengupta P, Ghosh S, Sheldrick WS (2003) Eur J Inorg Chem 2:363. doi:10.1002/ejic.200390049

    Article  Google Scholar 

  26. Dinda R, Sengupta P, Ghosh S, Figge HM, Sheldrick WS (2002) Dalton Trans 4434

  27. Gohdes JW, Armstrong WA (1992) Inorg Chem 13:368. doi:10.1021/ic00029a007

    Article  Google Scholar 

  28. Sheldrick GM (2008) SHELX97—Programs for crystal structure analysis: structure determination and refinement (SHELXS/L). Acta Crystallogr A64:112

    CAS  Google Scholar 

  29. Farrugia LJ, Win GX (1999) J Appl Cryst 32:837. doi:10.1107/S0021889899006020

    Article  Google Scholar 

  30. Farrugia LJ (1997) ORTEP-3 for Windows. J Appl Cryst 30:565. doi:10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  31. Sheldrick GM (1999) SHELXTL version 5.1: program for the solution and refinement of crystal structures. Bruker AXS P4, Inc., Madison, WI, USA

    Google Scholar 

  32. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans 1349

  33. Conley RT (1966) Infrared spectroscopy. Allyn & Bacon, Boston

    Google Scholar 

  34. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. Wiley, New York, p 23

    Google Scholar 

  35. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  36. Mukhopadhyay U, Bernal I, Massoud SS, Mautner FA (2004) Inorg Chim Acta 357:3673. doi:10.1016/j.ica.2004.05.030

    Article  CAS  Google Scholar 

  37. Song Y, Zhu D-R, Zhang K-L, Xu Y, Duan C-Y, You X-Z (2000) Polyhedron 19:1461. doi:10.1016/S0277-5387(00)00402-2

    Article  CAS  Google Scholar 

  38. Batra G, Mathur P (1994) Transition Met Chem 19:160. doi:10.1007/BF00161880

    Article  CAS  Google Scholar 

  39. Hu Z-Q, Wu Y, Jia B, Shi S-M, Zhu X-D, Song F-H (2005) Inorg Chem 21:1710

    Google Scholar 

Download references

Acknowledgments

The financial assistance from AICTE, Govt. of India is gratefully acknowledged. Joy Chakraborty is grateful to the University Grants Commission, New Delhi, Government of India, for the award of a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiran Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shit, S., Chakraborty, J., Samanta, B. et al. Three new coordination complexes of cobalt(III), manganese(II), and copper(II) with N,N,O-donor hydrazone ligands: syntheses and structural characterizations. Struct Chem 20, 633–642 (2009). https://doi.org/10.1007/s11224-009-9455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9455-7

Keywords

Navigation