Skip to main content
Log in

Synthesis, crystal structure, and DNA-binding studies of a one-dimensional copper(II) polymer bridged both by oxamidate and thiocyanato ligands

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A new one-dimensional copper(II) polymer, [Cu4(dmapox)2(SCN)4(CH3OH)2] n , where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide, was synthesized and characterized by elemental analysis, conductivity measurement, IR, and electronic spectral studies. The crystal structure of the copper(II) complex has been determined by X-ray single-crystal diffraction. The complex crystallizes in triclinic, space group − 1 and exhibits infinite one-dimensional copper(II) polymeric chain bridged both by bis-tridentate μ-trans-dmapox and μ-1,3-thiocyanato ligand. The environment around the copper(II) atom can be described as distorted square-pyramid. The Cu···Cu separations through the oxamidate and thiocyanato bridges are 5.246(2) Å (Cu1–Cu1i), 5.2649(14) Å (Cu2–Cu2ii), and 5.8169(15) Å (Cu1–Cu2), respectively. The interaction of the copper(II) complex with herring sperm DNA (HS-DNA) has been investigated by using absorption and emission spectral and electrochemical techniques and viscometry. The results reveal that the copper(II) complex may interact with DNA in the mode of groove binding with the intrinsic binding constant of 2.56 × 105 M−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yaghi OM, Davis CE, Li G, Li H (1997) J Am Chem Soc 119:2861. doi:10.1021/ja9639473

    Article  CAS  Google Scholar 

  2. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982. doi:10.1038/35010088

    Article  CAS  Google Scholar 

  3. Kongshaug KO, Fjellvåg H (2006) Inorg Chem 45:2424. doi:10.1021/ic050662v

    Article  CAS  Google Scholar 

  4. Ruiz R, Faus J, Lloret F, Julve M, Journaux Y (1999) Coord Chem Rev 193:1069. doi:10.1016/S0010-8545(99)00138-1

    Article  Google Scholar 

  5. Goher MAS, Mautner FA, Hafez AK, Abu-Youssef MAM, Gspan C, Badr AMA (2003) Polyhedron 22:975. doi:10.1016/S0277-5387(03)00022-6

    Article  CAS  Google Scholar 

  6. Yang G, Zhu HG, Liang BH, Chen XM (2001) J Chem Soc, Dalton Trans 580. doi:10.1039/b009129o

  7. Ribas J, Diaz C, Costa R, Tercero J, Solans X, Font-Bardía M, Stoeckli-Evans H (1998) Inorg Chem 37:233. doi:10.1021/ic970899u

    Article  CAS  Google Scholar 

  8. Chabner BA, Roberts TG (2005) Nat Rev Cancer 5:65. doi:10.1038/nrc1529

    Article  CAS  Google Scholar 

  9. Zhou CY, Zhao J, Wu YB, Yin CX, Yang P (2007) J Inorg Biochem 101:10. doi:10.1016/j.jinorgbio.2006.07.011

    Article  CAS  Google Scholar 

  10. Gao F, Chao H, Zhou F, Yuan YX, Peng B, Ji LN (2006) J Inorg Biochem 100:1487. doi:10.1016/j.jinorgbio.2006.04.008

    Article  CAS  Google Scholar 

  11. Kumar RS, Arunachalam S (2006) Polyhedron 25:3113. doi:10.1016/j.poly.2006.05.043

    Article  CAS  Google Scholar 

  12. Shakir M, Parveen S, Chingsubam P, Aoki K, Khan SN, Khan AU (2006) Polyhedron 25:2929. doi:10.1016/j.poly.2006.04.023

    Article  CAS  Google Scholar 

  13. Ojima H, Yamada Y (1970) Bull Chem Soc Jpn 43:3018. doi:10.1246/bcsj.43.3018

    Article  CAS  Google Scholar 

  14. Sheldrick GM (2008) Acta Crystallogr A 64:112. doi:10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  15. Marmur J (1961) J Mol Biol 3:208

    Article  CAS  Google Scholar 

  16. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047. doi:10.1021/ja01640a067

    Article  CAS  Google Scholar 

  17. Barton JK, Goldberg JM, Kumar CV, Turro NJ (1986) J Am Chem Soc 108:2081. doi:10.1021/ja00268a057

    Article  CAS  Google Scholar 

  18. Chaires JB, Dattagupta N, Crothers DM (1982) Biochemistry 21:3933. doi:10.1021/bi00260a005

    Article  CAS  Google Scholar 

  19. Cohen G, Eisenberg H (1969) Biopolymers 8:45. doi:10.1002/bip.1969.360080105

    Article  CAS  Google Scholar 

  20. Chand B, Ray U, Mostafa G, Lu TH, Sinha C (2004) Polyhedron 23:1669. doi:10.1016/j.poly.2004.02.029

    Article  CAS  Google Scholar 

  21. Geary WJ (1971) Coord Chem Rev 8:81. doi:10.1016/S0010-8545(00)80009-0

    Article  Google Scholar 

  22. Ojima H, Nonoyama KZ (1972) Z Anorg Allg Chem 389:75. doi:10.1002/zaac.19723890110

    Article  CAS  Google Scholar 

  23. Karan NK, Mitra S, Matsushita T, Gramlich V, Rosair G (2002) Inorg Chim Acta 332:87. doi:10.1016/S0020-1693(01)00822-2

    Article  CAS  Google Scholar 

  24. Bakalbassis EG, Mrozinski J, Tsipis CA (1986) Inorg Chem 25:3684. doi:10.1021/ic00240a033

    Article  CAS  Google Scholar 

  25. Addison AW, Rao TN, Reedijk Jan, van Rijin J, Verschoor GC (1984) J Chem Soc Dalton Trans 1349

  26. Sanz JL, Cervera B, Ruiz R, Bois C, Faus J, Lloret F, Julve M (1996) J Chem Soc, Dalton Trans 1359. doi:10.1039/dt9960001359

  27. Lloret F, Julve M, Real JA, Faus J, Ruiz R, Mollar M, Castro I, Bois C (1992) Inorg Chem 31:2956. doi:10.1021/ic00039a052

    Article  CAS  Google Scholar 

  28. Real JA, Mollar M, Ruiz R, Faus J, Lloret F, Julve M, Philoche-Leisalles M (1993) J Chem Soc, Dalton Trans 1483. doi:10.1039/dt9930001483

  29. Navarro JAR, Romero MA, Salas JM, Quirós M, Tiekink ERT (1997) Inorg Chem 36:4988. doi:10.1021/ic970083t

    Article  CAS  Google Scholar 

  30. Cremer D, Pople JA (1975) J Am Chem Soc 97:1354. doi:10.1021/ja00839a011

    Article  CAS  Google Scholar 

  31. Delgado FS, Kerbellec N, Ruiz-Perez C, Cano J, Lloret F, Julve M (2006) Inorg Chem 45:1012. doi:10.1021/ic0508526

    Article  CAS  Google Scholar 

  32. Berg KE, Pellegrin Y, Blondin G, Ottenwaelder X, Journaux Y, Canovas MM, Mallah T, Parsons S, Aukauloo A (2002) Eur J Inorg Chem 2:323. doi:10.1002/1099-0682(20022)2002:2<323::AID-EJIC323>3.0.CO;2-K

    Article  Google Scholar 

  33. Escuer A, Kumar SB, Maunter F, Vicente R (1998) Inorg Chim Acta 269:313. doi:10.1016/S0020-1693(97)05801-5

    Article  CAS  Google Scholar 

  34. Bloomfield VA, Crothers DM, Tinoco I (1974) Physical chemistry of nucleic acids. Harper and Row, New York

    Google Scholar 

  35. Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair BU (2000) Biochim Biophys Acta 1475:157

    CAS  Google Scholar 

  36. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392. doi:10.1021/bi00394a013

    Article  CAS  Google Scholar 

  37. Strekowski L, Harden DB, Wydra RL, Stewart KD, Wilson WD (1989) J Mol Recognit 2:158. doi:10.1002/jmr.300020404

    Article  CAS  Google Scholar 

  38. Indumathy R, Radhika S, Kanthimathi M, Weyhermuller T, Nair BU (2007) J Inorg Biochem 101:434. doi:10.1016/j.jinorgbio.2006.11.002

    Article  CAS  Google Scholar 

  39. Lepecq JB, Paoletti C (1967) J Mol Biol 27:87

    Article  CAS  Google Scholar 

  40. Nelson SM, Ferguson LR, Denny WA (2007) Mutat Res 623:24. doi:10.1016/j.mrfmmm.2007.03.012

    CAS  Google Scholar 

  41. Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) J Am Chem Soc 123:5878. doi:10.1021/ja010041a

    Article  CAS  Google Scholar 

  42. Lakowiez JR, Webber G (1973) Biochemistry 12:4161. doi:10.1021/bi00745a020

    Article  Google Scholar 

  43. Mahadevan S, Palaniandavar M (1998) Inorg Chem 37:693. doi:10.1021/ic961066r

    Article  CAS  Google Scholar 

  44. Carter MT, Bard AJ (1987) J Am Chem Soc 109:7528. doi:10.1021/ja00258a046

    Article  CAS  Google Scholar 

  45. Selvi PT, Palaniandavar M (2002) Inorg Chim Acta 337:420. doi:10.1016/S0020-1693(02)01112-X

    Article  CAS  Google Scholar 

  46. Liu J, Zhang T, Lu T, Qu L, Zhou H, Zhang C, Ji L (2002) J Inorg Biochem 91:269. doi:10.1016/S0162-0134(02)00441-5

    Article  CAS  Google Scholar 

  47. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Biochemistry 31:9319. doi:10.1021/bi00154a001

    Article  CAS  Google Scholar 

  48. Jin L, Yang P (1997) J Inorg Biochem 68:79. doi:10.1016/S0162-0134(97)00004-4

    Article  CAS  Google Scholar 

  49. Strekowski L, Wilson B (2007) Mutat Res 623:3. doi:10.1016/j.mrfmmm.2007.03.008

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Foundation of Qingdao City (No. 06-2-2-11-jch), the National Natural Science Foundation of China (No. 30672515), the Ph.D. Program Foundation of Ministry of Education of China, and the National Undergraduate Innovative Test Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Tuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YT., Liu, ZQ., Wu, ZY. et al. Synthesis, crystal structure, and DNA-binding studies of a one-dimensional copper(II) polymer bridged both by oxamidate and thiocyanato ligands. Struct Chem 19, 819–826 (2008). https://doi.org/10.1007/s11224-008-9371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9371-2

Keywords

Navigation