Skip to main content
Log in

Non-Bonded Intermolecular Interactions and Crystal Stability of trans-1,4-Cyclohexanedicarboxylic Acid, 1,4-dibromo

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular geometry, crystal packing and thermal stability of trans-1,4-cyclohexanedicarboxylic acid, 1,4-dibromo (I) are examined, in order to analyse the relative influence of the different intermolecular interactions at play. From a comparison with the corresponding properties of trans1,4-cyclohexanedicarboxylic acid (II), some insights on the results of the competition between Br and carboxylic groups are obtained. In the crystalline state, the molecules of both compounds present chair centrosymmetric geometry and build infinite chains through ring hydrogen bonds involving the carboxylic groups. These groups are axial in I and equatorial in II, giving rise to different assembly of the chains. In both compounds there is in general good agreement between the in-crystal geometry and the B3LYP/LanL2DZ optimized geometry of the corresponding isolated molecule. The only significant differences are related to the carboxylic groups. The intermolecular contacts in I have been rationalized on the basis of a graph set analysis. A molecular dynamics based method has been used to analyse the temperature dependence of the mean life time of the different kinds of hydrogen bonds characterized in I. It has been found that the O–H⋅ < eqid2 > ⋅O and C–H⋅ < eqid3 > ⋅O(carbonyl) interactions are the main source of thermal stability. The melting point of I determined within this approach agrees very well with the experimental value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Echeverría, G. PhD thesis. Dpto. de Fésica, Fac. de Cs. Exactas, Universidad Nacional de La Plata, Argentina, 1997.

  2. Echeverría, G.; Punte, G.; Rivero, E.; Barón, M. Acta Cryst. C 1995, 51, 1020.

    Google Scholar 

  3. Hassel, G.; Hadler Vihovde, E. Acta Chem. Scand. 1953, 7, 1164.

    Article  CAS  Google Scholar 

  4. Dunitz, J. D.; Strickler, P. Helv. Chim. Acta 1966, 49, 2505.

    CAS  Google Scholar 

  5. Kahn, R.; Fourme, R.; André, D.; Renauld, M. Acta Cryst. B 1973, 29, 131.

    Article  CAS  Google Scholar 

  6. Echeverria, G.; Punte, G.; Barón, M. Struct. Chem. 2000, 11, 35.

    CAS  Google Scholar 

  7. Echeverría, G.; Goeta, A. E.; Barón, M.; Punte, G. Acta Cryst. E 2003, 59, o959.

    Google Scholar 

  8. Echeverría, G.; Punte, G.; Rivero, E.; Barón, M. Acta Cryst. C 1995, 51, 1023.

    Google Scholar 

  9. Barón, M.; de Zenobi, E. L.; Davidson, M. J. Mol. Struct. 1975, 124, 432.

    Google Scholar 

  10. (a) Allen, M. P.; Tildesley, D. J. Computer Simulations of Liquids; Clarendom Press: Oxford, 1987, and references therein; (b) Straub, G. K.; Aidun, J. B.; Wils, J. M.; Sanches-Castro, C. R.; Wallace, D. C. Phys. Rev. B 1994, 50, 5055; (c) Van Buren, R.; De Vlieg, J.; Berendsen, J. C. Langmuir 1995, 11, 2957.

  11. Gavezzotti, A. G. J. Mol. Struct. 1999, 486, 488.

    Article  Google Scholar 

  12. Caffarena, E.; Grigera, J. R. J. Chem. Soc. Faraday Trans. 1996, 92, 2285.

    Article  CAS  Google Scholar 

  13. Steiner, T. Acta Cryst. B 2001, 57, 103.

    Article  CAS  Google Scholar 

  14. (a) Bernstein, J.; Davis, R. E. In Implications of Molecular and Materials Structure for New Technologies; Howard, J. A. K.; Allen, F. H.; Shields, G. P., Eds.; Kluwer Academic Publishers: The Netherlands, 1999, 275. (b) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.

  15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision B.3 Gaussian, Inc.: Pittsburgh, PA, 1995.

  16. Van Gunsteren, W. F.; Berendsen, H. J. C. GROningen Molecular Simulations Package; BIOMOS, Groningen: The Netherlands, 1987.

  17. Franks, F.; Grigera, J. R. Water Sci. Rev. 1990, 5, 187.

    Article  CAS  Google Scholar 

  18. Leiserowitz, L. Acta Cryst. B 1976, 32, 775.

    Article  Google Scholar 

  19. Burnett, M. N.; Johnson, C. K. ORTEP-III. Report ORNL-6895; Oak Ridge National Laboratory: Oak Ridge, Tennessee, US, 1996.

    Google Scholar 

  20. Berstein, J.; Etter, M. C.; Leiserowitz, L. In Structure Correlation; Bürgi, H. B.; Dunitz, J. D., Eds.; 1994, 2, 431, and references therein.

  21. See for example: (a) Desiraju, G. R. Crystal Engineering; Elsevier Science Publishers B. V.: Amsterdam, 1989; (b) Echeverría, G.; Punte, G.; Barón, M. Struct. Chem. 2000, 11, 35; (c) Csóregh, I.; Brehmer, T.; Bombicz, P.; Weber, E. Cryst. Eng. 2001, 4, 343. These authors appreciation on the influence of C–Br...Br–C interactions in crystal stabilization is upheld even when halogen–halogen distances are larger than the sum of Van der Waals radii, (d) For a recent review see: Metrangolo, P.; Pilat, T.; Resnati, G.; Stevenazzi, A. Curr. Opin. Colloid Interface Sci. 2003, 8, 215.

    Google Scholar 

  22. Dance, I. New J. Chem. 2003, 27, 22.

    CAS  Google Scholar 

  23. (a) Meier, B. H.; Graf, F.; Ernst, R. R. J. Chem Phys. 1982, 16, 767; (b) Nagaoka, S.; Terao, T.; Imashiro, F.; Suika, A.; Hirota, N.; Nayashi, S. Chem. Phys. Lett. 1981, 80, 580.

  24. Dommen, J.; Brupbacher, T.; Grassi, G.; Bauder, A. J. Am. Chem. Soc. 1990, 112, 953.

    Article  CAS  Google Scholar 

  25. Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48.

    CAS  Google Scholar 

  26. Caffarena, E.; Grigera, J. R. Carbohydr. Res. 1997, 300, 51, and references therein.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Echeverría.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echeverría, G., Fantoni, A., Marañón, J. et al. Non-Bonded Intermolecular Interactions and Crystal Stability of trans-1,4-Cyclohexanedicarboxylic Acid, 1,4-dibromo. Struct Chem 16, 571–579 (2005). https://doi.org/10.1007/s11224-005-6097-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-005-6097-2

Keywords

Navigation