Skip to main content
Log in

Electronic Structure and Hydrogen Bonding in a Dicobalt(III) Werner Complex

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The bonding of the O-O group in the dicobalt cation 1a [(NH3)6Co2(μ-O2)(μ-OH)(μ-NH2)]3+ was studied by DFT methods (ADF program) and the bridging O2 ligand was characterized as superoxide(O2). In this complex, three bridging ligands connect the two cobalt atoms, forcing a cis conformation of the Co-O-O-Co atoms. A comparison was made with [(NH3)10Co2(μ-O2)]5+, 2a, where a trans arrangement is observed. Superoxide binds more strongly to the dicobalt(III) fragment in 2a than in 1a, both as a result of weaker Pauli repulsion and stronger covalent interaction. It was found that in 1a the electronic structure with one unpaired electron, where cobalt is formally Co(III), d6, and O2 carries one negative charge gives rise to the most stable structure, compared to possibilities with three and five unpaired electrons. The hydrogen bonds in the crystal were analyzed and the interactions between one water molecule or one nitrate ion studied in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Frémy, E. Ann. Chem. Pharm. 1852, 83, 227.

    Google Scholar 

  2. Spingler, B.; Scanavy-Gregoriev, M.; Werner, A.; Berke, H.; Lippard, S. J. Inorg. Chem. 2001, 40, 1065.

    Article  Google Scholar 

  3. Werner, A.; Steinitzer, F.; Rücker, R. Z. Inorg. Chem. 1899, 21, 96.

    Google Scholar 

  4. (a) Sharma, V. B.; Jain, S. L.; Sain, B. J. Mol. Cat. A-Chem. 2004, 212, 55. (b) Tabassum, S.; Parveen, S.; Arjmand, F. Ind. J. Chem. 2004, A43, 270. (c) Kervinen K.; Kopi, H.; Leskela, M.; Repo, J. Mol. Cat. A-Chem. 2003, 203, 9. (d) Furutachi, H.; Fujinami, S.; Suzuki, M.; Okawa, H. J. Chem. Soc., Dalton Trans. 2000, 2761. (e) Martell, A. E.; Motekaitis, R. J.; Rockcliffe, D.; Menif, R.; Ngwenya, P. M. Pure App. Chem. 1994, 66, 859.

  5. (a) Marsh, R. E.; Schaeffer, W. P. Acta Cryst. 1968, B24, 246. (b) Schaeffer, W. P.; Marsh, R. E. Acta Cryst. 1966, 21, 735. (c) Christoph, G. G.; Marsh, R. E.; Schaeffer, W. P. Inorg. Chem. 1969, 8, 291. (d) Thewalt, U.; Marsh, R. E. Inorg. Chem. 1972, 11, 351. (e) Fronczek, F. R.; Schaeffer, W. P.; Marsh, R. E. Inorg. Chem. 1975, 14, 611. (f) Schaeffer, W. P.; Ealick, S. E.; Marsh, R. E. Acta Cryst. 1981, B37, 34. (g) Miskowski, V. M.; Santarsiero, B. D.; Schaeffer, W. P.; Ansok, G. E.; Gray, H. B. Inorg. Chem. 1984, 23, 172.

  6. Schmidt, S.; Heinemann, F. W.; Grohmann, A. Eur. J. Inorg. Chem. 2000, 1657.

  7. (a) Miskowski, V. M.; Robbins, J. J.; Treitel, I. M.; Gray, H. B. Inorg. Chem. 1975, 14, 2318. (b) Vaska, L. Acc. Chem. Res. 1976, 9, 175.

  8. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford, University Press: New York, 1989.

    Google Scholar 

  9. (a) ADF-2002, Baerends, E. J.; Bérces, A.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Deng, L.; Dickson, R. M.; Ellis, D. E.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Groeneveld, J. A.; Gritsenko, O. V.; Harris, F. E.; van den Hoek, P.; Jacobsen, H.; van Kessel, G.; Kootstra, F.; van Lenthe, E.; Osinga, V. P.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Snijders, J. G.; Sola, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visser, O.; van Wezenbeek, E.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.; Ziegler, T. (b) Fonseca Guerra, C.; Visser, O.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Parallelisation of the Amsterdam Density Functional Programme in: Methods and Techniques for Computational Chemistry, Clementi, E. and Corongiu, C. eds, pp. 303–395, STEF, Cagliari, 1995. (c) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391. (d) Baerends, E. J.; Ellis, D.; Ros, P. Chem. Phys. 1973, 2, 41. (e) Baerends, E. J.; Ros, P.; Int. J. Quantum Chem. 1978, S12, 169. (f) Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988, 33, 87. (g) te Velde, G.; Baerends, E. J. J. Comp. Phys. 1992, 99, 84.

  10. (a) Fronczek, F. R.; Schaeffer, W. P.; Marsh, R. E. Acta Cryst. 1974, B30, 117. (b) Marsh, R. E. Inorg. Chem. 1968, 7, 725.

  11. (a) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1755. (b) Ziegler, T.; Rauk, A. Inorg. Chem. 1978, 18, 1758. (c) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1.

  12. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.

    Google Scholar 

  13. Becke, A. D. J. Chem. Phys. 1987, 88, 1053.

    Article  Google Scholar 

  14. (a) Perdew, J. P. Phys. Rev. 1986, B33, 8822. (b) Perdew, J. P. Phys. Rev. 1986, B34, 7406.

  15. (a) Versluis, L.; Ziegler, T. J. Chem. Phys. 1988, 88, 322; (b) Fan, L.; Ziegler, T.; J. Chem. Phys. 1991, 95, 7401.

  16. van Lenthe, E.; Ehlers, A.; Baerends, E.-J. J. Chem. Phys. 1999, 110, 8943.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Calhorda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandeira, N.A.G., Calhorda, M.J. Electronic Structure and Hydrogen Bonding in a Dicobalt(III) Werner Complex. Struct Chem 16, 265–271 (2005). https://doi.org/10.1007/s11224-005-4457-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-005-4457-6

Keywords

Navigation