Skip to main content
Log in

Substituent Effects on Hydrogen Bonding in Watson–Crick Base Pairs. A Theoretical Study

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We have theoretically analyzed Watson–Crick AT and GC base pairs in which purine C8 and/or pyrimidine C6 positions carry a substituent X = H, F, Cl or Br, using the generalized gradient approximation (GGA) of density functional theory at BP86/TZ2P. The purpose is to study the effects on structure and hydrogen bond strength if X = H is substituted by a halogen atom. Furthermore, we wish to explore the relative importance of electrostatic attraction versus orbital interaction in the above multiply hydrogen-bonded systems, using a quantitative bond energy decomposition scheme. We find that replacing X = H by a halogen atom has relatively small yet characteristic effects on hydrogen bond lengths, strengths and bonding mechanism. In general, it reduces the hydrogen-bond-accepting- and increases the hydrogen-bond-donating capabilities of a DNA base. The orbital interaction component in these hydrogen bonds is found for all substituents (X = H, F, Cl, and Br) to contribute about 41% of the attractive interactions and is thus of the same order of magnitude as the electrostatic component, which provides the remaining 59% of the attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Stryer, L. Biochemistry; Freeman: New York, 1988. (b) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: Berlin, 1991. (c) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.

  2. (a) Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 1999, 111, 3120; Angew. Chem. Int. Ed. 1999, 38, 2942. (b) Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. J. Am. Chem. Soc. 2000, 122, 4117. (c) Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581. (d) Fonseca Guerra, C.; Baerends, E. J.; Bickelhaupt, F. M. Crystal Growth Design 2002, 2, 239. (e) Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 2002, 114, 2194; Angew. Chem. Int. Ed. 2002, 41, 2092. (f) Fonseca Guerra, C.; Bickelhaupt, F. M. J. Chem. Phys. 2003, 119, 4262. (g) Fonseca Guerra, C.; Bickelhaupt, F. M.; Baerends, E. J. Chem. Phys. Chem. 2004, 5, 481.

  3. (a) Hobza, P.; Sponer, J. Chem. Rev. 1999, 99, 3247. (b) Bertran, J.; Oliva, A.; Rodríguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159. (c) Brameld, K.; Dasgupta, S.; Goddard, W. A. III. J. Phys. Chem. B 1997, 101, 4851. (d) Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965. (e) Gould, I. R.; Kollman, P. A. J. Am. Chem. Soc. 1994, 116, 2493. (f) Santamaria, R.; Vázquez, A. J. Comp. Chem. 1994, 15, 981. (g) Sponer, J.; Hobza, P. J. Phys. Chem. A 2000, 104, 4592. (h) Hobza, P.; Sponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B, 2000, 104, 6286. (i) Poater, J.; Fradera, X.; Solà, M.; Duran, M.; Simon, S. Chem. Phys. Lett. 2003, 369, 248.

  4. Bickelhaupt, F. M.; Baerends, E. J. In Rev. Comput. Chem.; Lipkowitz, K. B.; Boyd, D. B., Eds.; Wiley-VCH: New York, 2000; Vol. 15, pp. 1–86.

    Google Scholar 

  5. (a) te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931. (b) Fonseca Guerra, C.; Visser, O.; Snijders, J. G.; te Velde, G.; Baerends, E. J. In Methods and Techniques for Computational Chemistry; Clementi, E.; Corongiu, G.; Eds.; STEF: Cagliari, 1995, pp. 305–395. (c) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41. (d) Baerends, E. J.; Ros, P. Chem. Phys. 1975, 8, 412. (e) Baerends, E. J.; Ros, P. Int. J. Quantum Chem. Symp. 1978, 12, 169. (f) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391. (g) Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988, 33, 87. (h) te Velde, G.; Baerends, E. J. J. Comp. Phys. 1992, 99, 84. (i) Snijders, J. G.; Baerends, E. J.; Vernooijs, P. At. Nucl. Data Tables 1982, 26, 483. (j) Krijn, J.; Baerends, E. J. Fit-Functions in the HFS-Method (internal report in Dutch); Vrije Universiteit: Amsterdam, 1984. (k) Versluis, L.; Ziegler, T. J. Chem. Phys. 1988, 88, 322. (l) Slater, J. C. Quantum Theory of Molecules and Solids; McGraw-Hill: New York, 1974; Vol. 4. (m) Becke, A. D. J. Chem. Phys. 1986, 84, 4524. (n) Becke, A. Phys. Rev. A 1988, 38, 3098. (o) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. (p) Perdew, J. P. Phys. Rev. B 1986, 33, 8822; Erratum: Phys. Rev. B 1986, 34, 7406. (q) Fan, L.; Ziegler, T. J. Chem. Phys. 1991, 94, 6057.

  6. Vögtle, F. Supramolecular Chemistry; Wiley: Chichester, 1993.

    Google Scholar 

  7. Crooke, S. T., Ed. Antisense Research and Application; Springer-Verlag: Berlin, 1998.

    Google Scholar 

  8. (a) Kawahara, S.-I.; Uchimaru, T.; Taira, K.; Sekine, M. J. Phys. Chem. A 2002, 106, 3207. (b) Kawahara, S.-I.; Kobori, A.; Sekine, M.; Taira, K.; Uchimaru, T. J. Phys. Chem. 2001, 105, 10596. (c) Kawahara, S.-I; Uchimaru, T.; Taira, K.; Sekine, M. J. Phys. Chem. A 2001, 105, 3894. (d) Kawahara, S.-I.; Wada, T.; Kawauchi, S.; Uchimaru, T.; Sekine, M. J. Phys. Chem. A 1999, 103, 8516.

  9. Meng, F.; Liu, C.; Xu, W. Chem. Phys. Lett. 2003, 373, 72.

    Article  Google Scholar 

  10. (a) Morokuma, K. Chem. Phys. 1971, 55, 1236. (b) Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10, 325.

    Google Scholar 

  11. (a) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1755. (b) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1558; (c) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1.

  12. (a) Stone, A. J. The Theory of Intermolecular Forces; Clarendon Press: Oxford, 1996. (b) Stone, A. J. Chem. Phys. Lett. 1993, 211, 101.

  13. (a) Fonseca Guerra, C.; Handgraaf, J.-W.; Baerends, E. J; Bickelhaupt, F. M. J. Comput. Chem. 2004, 25, 189. (b) Bickelhaupt, F. M.; van Eikema Hommes, N. J. R.; Fonseca Guerra, C.; Baerends, E. J. Organometallics 1996, 15, 2923.

    Google Scholar 

  14. (a) Voronoi, G. F.; Reine, Z. Angew. Math. 1908, 134, 198. (b) Kittel, C. Introduction to Solid State Physics; Wiley: New York, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Matthias Bickelhaupt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, C.F., van der Wijst, T. & Bickelhaupt, F.M. Substituent Effects on Hydrogen Bonding in Watson–Crick Base Pairs. A Theoretical Study. Struct Chem 16, 211–221 (2005). https://doi.org/10.1007/s11224-005-4453-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-005-4453-x

Keywords

Navigation