Skip to main content
Log in

Fem Simulation of the Cross-Wedge Rolling Process for a Stepped Shaft

  • Published:
Strength of Materials Aims and scope

The paper presents the results of numerical modeling of a cross-wedge rolling process for producing a stepped shaft. The modeling was performed with commercial software Forge NxT 1.1 using the finite element method. The numerical analysis enabled the determination of changes in the shape of the workpiece, effective strain, damage function and temperature distributions, as well as variations in the forces and torque acting on the tool. The numerical results demonstrate that personal computers can today be used to model even the most difficult cases of the cross-wedge rolling process, in which complex shapes of the tools and thermal phenomena occurring during the forming process have to be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Z. Pater, “Cross-wedge rolling,” in: S. Hashmi (Ed.), Comprehensive Materials Processing, Vol. 3, Elsevier (2014), pp. 211–279.

  2. X. P. Fu and T. A. Dean, “Past developments, current applications and trends in the cross wedge rolling process,” Int. J. Mach. Tool. Manu., 33, No. 2, 367–400 (1993).

    Article  Google Scholar 

  3. Y. Dong, K. A. Tagavi, and M. R. Lovell, “Analysis of interfacial slip in cross-wedge rolling: a numerical and phenomenological investigation,” J. Mater. Process. Tech., 97, Nos. 1–3, 44–53 (2000).

  4. M. R. Lovell, “Evaluation of critical interfacial friction in cross wedge rolling,” J. Tribol., 123, No. 2, 424–429 (2001).

    Article  Google Scholar 

  5. Y. Dong, M. Lovell, and K. Tagavi, “Analysis of interfacial slip in cross-wedge rolling: an experimentally verified finite-element model,” J. Mater. Process. Tech., 80–81, 273–281 (1998).

    Article  Google Scholar 

  6. Y. Dong, K. A. Tagavi, M. R. Lovell, and Z. Deng, “Analysis of stress in cross wedge rolling with application to failure,” Int. J. Mech. Sci., 42, 1233–1253 (2000).

    Article  Google Scholar 

  7. Z. Deng, M. R. Lovell, and K. A. Tagavi, “Influence of material properties and forming velocity on the interfacial slip characteristics of cross wedge rolling,” J. Manuf. Sci. Eng., 123, 647–653 (2001).

    Article  Google Scholar 

  8. S. G. Choi, D. J. Yoon, G. A. Lee, et al., “Cold rolling technique for eliminating cutting process in manufacturing precise product using non-heat-treated micro alloys,” Mater. Sci. Forum, 475–479, 3235–3238 (2005).

  9. Q. Li and M. Lovell, “On the interfacial friction of a two-roll CWR process,” J. Mater. Process. Tech., 160, 245–256 (2005).

    Article  Google Scholar 

  10. S. Urankar, M. Lovell, C. Morrow, et al., “Establishment of failure conditions for cross-wedge rolling of hollow shafts,” J. Mater. Process. Tech., 177, 545–549 (2006).

    Article  Google Scholar 

  11. S. Urankar, M. Lovell, C. Morrow, et al., “Development of a critical friction model for cross wedge rolling hollow shafts,” J. Mater. Process. Tech., 177, 539–544 (2006).

    Article  Google Scholar 

  12. S. Xuedao, L. Chuanmin, Z. Jing, and H. Zhenghuan, “Theoretical and experimental study of varying rule of rolling-moment about cross-wedge rolling,” J. Mater. Process. Tech., 187–188, 752–756 (2007).

    Google Scholar 

  13. H. W. Lee, G. A. Lee, D. J. Yoon, et al., “Optimization of design parameters using a response surface method in a cold cross-wedge rolling,” J. Mater. Process. Tech., 201, 112–117 (2008).

    Article  Google Scholar 

  14. X. Shu, X. Wei, Ch. Li, and Z. Hu, “The influence rules of stress about technical parameters on synchronous rolling railway axis with multi-wedge cross-wedge rolling,” Appl. Mech. Mater., 37–38, 1482–1488 (2010).

    Article  Google Scholar 

  15. J. Zhao and L. Lu, “The application of multi-wedge cross wedge rolling forming long shaft technology,” Appl. Mech. Mater., 101–102, 1002–1005 (2012).

    Google Scholar 

  16. V. Y. Shchukin, G. V. Kozhevnikova, and V. V. Petrenko, “Cross-wedge rolling at Pti NAS Belarus,” Appl. Mech. Mater., 201–202, 1198–1202 (2012).

    Article  Google Scholar 

  17. W. Peng and K. Zhang, “Theoretical research of the axial force about cross wedge rolling,” Key Eng. Mater., 433, 27–32 (2010).

    Article  Google Scholar 

  18. X. Xing and X. Shu, “Finite element analysis of stress and strain in two-wedge cross wedge rolling step-shaft part,” Mater. Sci. Forum, 575–578, 255–260 (2008).

    Article  Google Scholar 

  19. C. Yang, K. Zhang, and Z. Hu, “Development of central minute cavity in the workpiece of cross wedge rolling,” Appl. Mech. Mater., 215–216, 766–770 (2012).

    Article  Google Scholar 

  20. X. Shu, B. Sun, and M. Xiao, “Influence regularities of axial force of cross wedge rolling symmetric shaft-parts about technical parameters,” Adv. Mater. Res., 314–316, 589–593 (2011).

    Article  Google Scholar 

  21. H. N. Lu, D. B. Wei, and Z. Y. Jiang, “Investigation on dimensional accuracy in micro cross wedge rolling of metals,” Key Eng. Mater., 622–623, 943–948 (2014).

    Article  Google Scholar 

  22. D. Wei, H. Lu, Z. Jiang, and K. Manabe, “Optimization of micro cross wedge rolling and surface morphology of micro stepped components,” Key Eng. Mater., 622–623, 964–969 (2014).

    Article  Google Scholar 

  23. Z. Jiang, H. Lu, D. Wei, et al., “Finite element method analysis of micro cross wedge rolling of metals,” Procedia Engineer., 81, 2463–2468 (2014).

    Article  Google Scholar 

  24. W. F. Peng, J. H. Zhang, G. X. Huang, et al., “Stress distribution during the cross-wedge rolling of composite 42CrMo/Q235 laminated shafts,” Int. J. Adv. Manuf. Tech., 83, 145–155 (2016).

    Article  Google Scholar 

  25. M. Wang, X. Li, and F. Du, “Analysis of metal forming in two-roll cross wedge rolling process using finite element method,” J. Iron Steel Res. Int., 16, No. 1, 38–43 (2009).

    Article  Google Scholar 

  26. X. Li, M. Wang, and F. Du, “The coupling thermal-mechanical and microstructural model for the FEM simulation of cross wedge rolling,” J. Mater. Process. Tech., 172, 202–207 (2006).

    Article  Google Scholar 

  27. Y. Xiong, S. Sun, Y. Li, et al., “Effect of warm cross-wedge rolling on microstructure and mechanical property of high carbon steel rods,” Mater. Sci. Eng. A, 431, 152–157 (2006).

    Article  Google Scholar 

  28. M. Wang, X. Li, F. Du, and Y. Zheng, “A coupled thermal-mechanical and microstructural simulations of the cross wedge rolling process and experimental verification,” Mater. Sci. Eng. A, 391, 305–312 (2005).

    Article  Google Scholar 

  29. M. Wang, X. Li, F. Du, and Y. Zheng, “Hot deformation of austenite and prediction of microstructure evolution of cross-wedge rolling,” Mater. Sci. Eng. A, 379, 133–140 (2004).

  30. G. Fang, L. P. Lei, and P. Zeng, “Three-dimensional rigid-plastic finite element simulation for two-roll cross-wedge rolling process,” J. Mater. Process. Tech., 129, 245–249 (2002).

    Article  Google Scholar 

  31. W. Regone, M. da Silva, and S. Button, “Numerical and experimental analysis of the microstruc¬tural evolution during cross wedge rolling of V-Ti microalloyed steel,” REM - Revista Escola de Minas (Metalurgia & Materials), 62, No. 4, 495–502 (2009).

  32. C. G. Xu, G. H. Liu, G. S. Ren, et al., “Finite element analysis of axial feed bar rolling,” Acta Metall. Sin. -Engl., 20, No. 4, 463–468 (2007).

    Article  Google Scholar 

  33. S. J. Mirhamadi, M. Hamedi, and S. Ajami, “Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys,” Int. J. Adv. Manuf. Tech., 74, 995–1004 (2014).

    Article  Google Scholar 

  34. F. Shen, W. Yu, W. Peng, et al., “The strain analysis of plate cross wedge rolling of spiral shaft parts,” Adv. Mater. Res., 941–944, 1895–1900 (2014).

    Article  Google Scholar 

  35. C. Yang, K. Zhang, and Z. Hu, “Simulation analysis of cross wedge rolling hollow parts with mandrel,” Adv. Mater. Res., 538–541, 542–547 (2012).

    Google Scholar 

  36. B. Hu, X. Shu, P. Yu, and W. Peng, “The strain analysis at the broadening stage of the hollow railway axle by multi-wedge cross wedge rolling,” Appl. Mech. Mater., 494–495, 457–460 (2014).

    Article  Google Scholar 

  37. J. Zhou, Z. Yu, and Q. Zeng, “Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft,” Int. J. Adv. Manuf. Tech., 72, 1559–1566 (2014).

    Article  Google Scholar 

  38. H. Yan, L. Wang, Y. Liu, et al., “Effect of thread helix angle on the axial metal flow of cross wedge rolling thread shaft,” Appl. Mech. Mater., 440, 177–181 (2014).

    Article  Google Scholar 

  39. Z. Zheng, B. Wang, and Z. Hu, “Study on roller profile for cam forming by cross wedge rolling,” Appl. Mech. Mater., 217–219, 1713–1718 (2012).

    Article  Google Scholar 

  40. F. Ying, J., Shen, and L. Wu, “Study on the process of gear shaft formed by cross wedge rolling based on deform,” Adv. Mater. Res., 497, 55–60 (2012).

  41. X. Shu, X. Wei, and L. Chen, “Influence analysis of block wedge on rolled-piece end quality in cross wedge rolling,” Appl. Mech. Mater., 101–102, 1055-1058 (2012).

    Google Scholar 

  42. X. Wei and X. Shu, “Study on production mechanism of end concavity in cross wedge rolling,” Adv. Mater. Res., 314–316, 468–472 (2011).

    Article  Google Scholar 

  43. P. Qui, H. Xiao, and M. Li, “Effect of non-uniform temperature field on piece rolled by three-roll cross wedge rolling,” Appl. Mech. Mater., 16–19, 456–461 (2009).

    Google Scholar 

  44. J. Zhou, C. Xiao, Y. Yu, and Z. Jia, “Influence of tool parameters on central deformation in two-wedge two-roll cross-wedge rolling,” Adv. Mater. Res., 486, 478–483 (2012).

    Article  Google Scholar 

  45. H. Yan, J. Liu, Z. Hu, et al., “Effects of die tooth profile on forming helical tooth shaft in cross wedge rolling,” Appl. Mech. Mater., 274, 165–169 (2013).

    Article  Google Scholar 

  46. W. Ma, B. Wang, J. Zhou, and Q. Li, “Analysis of square billet cross wedge rolling process using finite element method,” Appl. Mech. Mater., 271–272, 406–411 (2013).

    Google Scholar 

  47. M. Jin, J. Li, and F. Ying, “Study on influencing factors of tooth forming quality for gear shaft with cross wedge rolling,” Appl. Mech. Mater., 201–202, 1164–1169 (2012).

    Article  Google Scholar 

  48. F. Zhao, J. Liu, J. Huang, and Z. Hu, “Analysis of the wedge tip fillet for central defects in the process of cross wedge rolling 4Cr9Si2 valve,” Adv. Mater. Res., 706–708, 3–6 (2013).

    Google Scholar 

  49. B. Sun, X. Zeng, X. Shu, et al., “Feasibility Study on forming hollow axle with multi-wedge synchrostep by cross wedge rolling,” Appl. Mech. Mater., 201–202, 673–677 (2012).

    Article  Google Scholar 

  50. X. Shu, Z. Li, and W. Zu, “Bending analysis and measures of the forming of automobile semi-axle on cross-wedge rolling with multi-wedge,” Appl. Mech. Mater., 184–185, 75–79 (2012).

    Article  Google Scholar 

  51. X. Wang, K. Zhang, J. Liu, and Z. Hu, “The effect and experimental research of forming angle on internal defect of valve roughcast formed by single cross wedge rolling,” Adv. Mater. Res., 230–232, 389–394 (2011).

    Google Scholar 

  52. W. Gong, X. Shu, W. Peng, and B. Sun, “The research on the microstructure evolution law of cross wedge rolling asymmetric shaft-parts based on parity wedge,” Appl. Mech. Mater., 201–202, 1121–1125 (2012).

    Article  Google Scholar 

  53. Z. Pater, “Numerical modelling of cross wedge rolling of rotary cutter body,” Acta Mechanica Slovaca, No. 3A, 361–366 (2008).

  54. Z. Pater, A. Gontarz, G. Samoùyk, et al., “Analysis of cross rolling process of toothed titanium shafts,” Arch. Metall. Mater., 54, No. 3, 617–626 (2009).

  55. Z. Pater, A. Gontarz, and A, Tofil, “Analysis of the cross-wedge rolling process of toothed shafts made from 2618 aluminium alloy,” J. Shanghai Jiaotong Univ. (Science), 16, No. 2, 162–166 (2011).

  56. Y. Huo, Q. Bai, B. Wang, et al., “A new application of unified constitutive equations for cross wedge rolling of high-speed railway axle steel,” J. Mater. Process. Tech., 223, 274–283 (2015).

    Article  Google Scholar 

  57. H. Ji, J. Liu, B. Wang, et al., “Cross-wedge rolling of a 4Cr9Si2 hollow valve: explorative experiment and finite element simulation,” Int. J. Adv. Manuf. Tech., 77, 15–26 (2015).

    Article  Google Scholar 

  58. H. Ji, J. Liu, B. Wang, et al., “Numerical analysis and experiment on cross wedge rolling and forging for engine valves,” J. Mater. Process. Tech., 221, 233–242 (2015).

    Article  Google Scholar 

  59. C. Yang and Z. Ku, “Research on the ovality of hollow shafts in cross wedge rolling with mandrel,” Int. J. Adv. Manuf. Tech., 83, 67–76 (2016).

    Article  Google Scholar 

  60. J. Ma, C. Yang, Z. Zheng, et al., “Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling,” Int. J. Miner. Met. Mater., 23, No. 11, 1302–1314 (2016).

    Article  Google Scholar 

  61. W. Peng, S. Zheng, Y. Chiu, et al., “Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft,” Rare Metal Mat. Eng., 45, No. 4, 836–842 (2016).

    Article  Google Scholar 

  62. X. D. Shu, J. Wei, and C. Liu, “Study on the control of end quality by one closed cross wedge rolling based wedge block,” Metalurgija, 56, Nos. 1–2, 123–126 (2017).

  63. J. Huo, J. Lin, Q. Bai, et al., “Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling,” J. Mater. Process. Tech., 239, 359–369 (2017).

    Article  Google Scholar 

  64. C. Yang, J. Ma, and Z. Hu, “Analysis and design of cross wedge rolling hollow axle sleeve with mandrel,” J. Mater. Process. Tech., 239, 346–358 (2017).

    Article  Google Scholar 

  65. H. Ji, J. Liu, B. Wang, et al., “A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation,” J. Mater. Process. Tech., 240, 1–11 (2017).

    Article  Google Scholar 

  66. M. Meyer, M. Stonis, and B. A. Behrnes, “Cross wedge rolling preforms for crankshafts,” Key Eng. Mater., 504–506, 205–210 (2012).

    Article  Google Scholar 

  67. M. Meyer, M. Stonis, and B. A. Behrens, “Cross wedge rolling and bi-directional forging of preforms for crankshafts,” Prod. Eng., 9, 61–71 (2015).

    Article  Google Scholar 

  68. M. F. Novella, A. Ghiotti, S. Bruschi, and P. F. Bariani, “Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars,” J. Mater. Process. Tech., 222, 259–267 (2015).

    Article  Google Scholar 

  69. K. Kpodzo, L. Fourment, P. Lanse, and P. Montmitonnet, “An accurate time integration scheme for arbitrary rotation motion: application to metal forming simulation,” Int. J. Mater. Form., 9, 71–84 (2016).

    Article  Google Scholar 

  70. Z. Pater and A. Tofil, “Experimental and theoretical analysis of the cross-wedge rolling process in cold forming conditions,” Arch. Metall. Mater., 52, No. 2, 289–297 (2007).

    Google Scholar 

  71. F. Q. Ying and B. S. Pan, “Analysis on temperature distribution in cross wedge rolling process with finite element method,” J. Mater. Process. Tech., 187–188, 392–396 (2007).

    Article  Google Scholar 

  72. Z. Pater and J. Bartnicki, “Finished cross-wedge rolling of hollowed cutters,” Arch. Metall. Mater., 51, No. 2, 205–211 (2006).

    Google Scholar 

  73. Z. Pater, “Finite element analysis of cross wedge rolling,” J. Mater. Process. Tech., 173, 201–208 (2006).

    Article  Google Scholar 

  74. Z. Pater, A. Gontarz, and W. Weronski, “Cross-wedge rolling by means of one flat wedge and two shaped rolls,” J. Mater. Process. Tech., 177, 550–554 (2006).

    Article  Google Scholar 

  75. Z. Pater, J. Bartnicki, and G. Samoùyk, “Numerical modelling of cross-wedge rolling process of ball pin,” J. Mater. Process. Tech., 164–165, 1235–1240 (2005).

    Article  Google Scholar 

  76. J. Bartnicki and Z. Pater, “Numerical simulation of three-rolls cross-wedge rolling of hollowed shaft,” J. Mater. Process. Tech., 164–165, 1154–1159 (2005).

    Article  Google Scholar 

  77. Z. Pater, “The analysis of the strain in parts formed by means of the wedge-rolls rolling (WRR),” Arch. Metall. Mater., 50, No. 3, 675–690 (2005).

    Google Scholar 

  78. J. Bartnicki and Z. Pater, “The aspects of stability in cross-wedge rolling processes of hollowed shafts,” J. Mater. Process. Tech., 155–156, 1867–1873 (2004).

    Article  Google Scholar 

  79. Z. Pater, “Stress state in cross wedge rolling process,” Arch. Metall., 48, No. 1, 21–35 (2003).

    Google Scholar 

  80. Z. Pater, T. Bulzak, and J. Tomczak, “Cross-wedge rolling of driving shaft from titanium alloy Ti6Al4V,” Key Eng. Mater., 687, 125–132 (2016).

    Article  Google Scholar 

  81. H. Huang, X. Chen, B. Fan, et al., “Initial billet temperature influence and location investigation on tool wear in cross wedge rolling,” Int. J. Adv. Manuf. Tech., 79, 1545–1556 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This scientific work was funded from the research and education (statutory activity) fund granted by the Polish Ministry of Science and Higher Education to the Faculty of Mechanical Engineering of the Lublin University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Pater.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 43 – 53, July – August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pater, Z., Tomczak, J. & Bulzak, T. Fem Simulation of the Cross-Wedge Rolling Process for a Stepped Shaft. Strength Mater 49, 521–530 (2017). https://doi.org/10.1007/s11223-017-9895-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-017-9895-z

Keywords

Navigation