Skip to main content
Log in

Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ni-base superalloys are a class of materials with high temperature excellent tensile, creep, and corrosion properties that have widespread applications in manufacturing hot parts of gas turbines. Application of cross wedge rolling (CWR) process for manufacturing Ni-base superalloys is of least investigated areas. In this article, the effects of CWR tool parameters on formability of Nimonic® 80A and Nimonic® 115 wrought superalloys are presented. The normalized Cockcroft-Latham model is adopted through finite element analysis to predict the occurrence of internal burst. The analytical results are validated through comparing them with experimental data. Comprehensive results of the effects of various CWR tool parameters on formability of Nimonic® 80A and Nimonic® 115 are presented. The results show that in some cases for Nimonic® 115, regardless of the stretching angle value (β), the internal burst fails the process. The results also indicate that Nimonic® 80A displays a relatively good ductility in low wedge angles and low stretching angles without suffering internal bursts, leading to sound part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pater Z (2000) Theoretical and experimental analysis of cross wedge rolling process. Int J Mach Tool Manuf 40(1):49–63

    Article  Google Scholar 

  2. Dong Y, Lovell M, Tagavi K (1998) Analysis of interfacial slip in cross-wedge rolling: an experimentally verified finite-element model. J Mater Process Technol 80–81:273–281

    Article  Google Scholar 

  3. Pater Z (1997) Theoretical method for estimation of mean pressure on contact area between rolling tools and workpiece in cross wedge rolling processes. Int J Mech Sci 39(2):233–243

    Article  Google Scholar 

  4. Lovell MR (2001) Evaluation of critical interfacial friction in cross wedge rolling. J Tribol-Trans ASME 123(2):424–429

    Article  Google Scholar 

  5. Pater Z (1999) Numerical simulation of the cross wedge rolling process including upsetting. J Mater Process Technol 92:468–473

    Article  Google Scholar 

  6. Deng Z, Lovell MR, Tagavi KA (2001) Influence of material properties and forming velocity on the interfacial slip characteristics of cross wedge rolling. J Manuf Sci Eng 123(4):647–653

    Article  Google Scholar 

  7. Li Q, Lovell MR, Slaughter W, Tagavi K (2002) Investigation of the morphology of internal defects in cross wedge rolling. J Mater Process Technol 125–126:248–257

    Article  Google Scholar 

  8. Pater Z (2003) Tools optimisation in cross wedge rolling. J Mater Process Technol 139(1):153–159

    Article  Google Scholar 

  9. Li Q, Lovell MR (2004) The establishment of a failure criterion in cross wedge rolling. Int J Adv Manuf Technol 24(3–4):180–189

    Google Scholar 

  10. Wang M, Li X, Du F, Zheng Y (2004) Hot deformation of austenite and prediction of microstructure evolution of cross-wedge rolling. Mater Sci Eng A-Struct Mater 379(1):133–140

    Article  Google Scholar 

  11. Pater Z, Bartnicki J, Samolyk G (2005) Numerical modelling of cross-wedge rolling process of ball pin. J Mater Process Technol 164:1235–1240

    Article  Google Scholar 

  12. Lee HW, Lee GA, Yoon DJ, Choi S, Na KH, Hwang MY (2008) Optimization of design parameters using a response surface method in a cold cross-wedge rolling. J Mater Process Technol 201(1):112–117

    Article  Google Scholar 

  13. Jia Z, Zhou J, Ji J, Lei Z, Xiang D, Sun X (2013) Influence analysis of area reduction for necking in twice-stage cross wedge rolling. Int J Adv Manuf Technol 66(9–12):1407–1413

    Article  Google Scholar 

  14. Zhou J, Xiao C, Yu Y, Jia Z (2013) Influence of tool parameters on tool wear in two-roll cross-wedge rolling. Int J Adv Manuf Technol 65(5–8):745–753

    Article  Google Scholar 

  15. Hayama M (1979) Optimum working conditions in the cross rolling of stepped shaft. J Mech Work Technol 3(1):31–46

    Article  Google Scholar 

  16. Pater Z, Weroñski W, Kazanecki J, Gontarz A (1999) Study of the process stability of cross wedge rolling. J Mater Process Technol 92–93:458–462

    Article  Google Scholar 

  17. Dong Y, Tagavi KA, Lovell MR (2000) Analysis of interfacial slip in cross-wedge rolling: a numerical and phenomenological investigation. J Mater Process Technol 97(1):44–53

    Article  Google Scholar 

  18. Reed RC (2006) The superalloys fundamentals and applications. Cambridge University Press

  19. Betteridge W, Heslop J (1974) The Nimonic alloys and other nickel-base high-temperature alloys. Edward Arnold Press

  20. Wright DC, Smith DJ (1986) Forging of blades for gas turbines. J Mater Sci Technol 2(7):742–747

    Article  Google Scholar 

  21. Brooks JW (2000) Forging of superalloys. J Mater Des 21(4):297–303

    Article  Google Scholar 

  22. DEFORM-3D User’s Manual (2009) Scientific Forming Technologies Corporation

  23. Shahriari D, Sadeghi MH, Akbarzadeh A, Cheraghzadeh M (2009) The influence of heat treatment and hot deformation conditions on γ′ precipitate dissolution of Nimonic 115 superalloy. Int J Adv Manuf Technol 45(9–10):841–850

    Article  Google Scholar 

  24. Jeong HS, Cho JR, Park HC (2005) Microstructure prediction of Nimonic 80A for large exhaust valve during hot closed die forging. J Mater Process Technol 162:504–511

    Article  Google Scholar 

  25. Freudenthal AM (1950) The inelastic behavior of solids. Wiley

  26. Oyane M (1972) Criteria of ductile fracture strain. Bull JSME 15(90):1507–1513

    Article  Google Scholar 

  27. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17(3):201–217

    Article  Google Scholar 

  28. Cockcroft MG, Latham DJ (1968) Ductility and the workability of metals. J Inst Met 96(1):33–39

    Google Scholar 

  29. Landre J, Pertence A, Cetlin PR, Rodrigues JMC, Martins PAF (2003) On the utilisation of ductile fracture criteria in cold forging. Finite Elem Anal Des 39(3):175–186

    Article  MATH  Google Scholar 

  30. Quan GZ, Wang FB, Liu YY, Shi Y, Zhou J (2013) Evaluation of varying ductile fracture criterion for 7075 aluminum alloy. T Nonferrous Metal Soc 23(3):749–755

    Article  Google Scholar 

  31. Takuda H, Mori K, Hatta N (1999) The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. J Mater Process Technol 95(1):116–121

    Article  Google Scholar 

  32. Ozturk F, Lee D (2004) Analysis of forming limits using ductile fracture criteria. J Mater Process Technol 147(3):397–404

    Article  Google Scholar 

  33. Nicolaou PD, Semiatin SL (2005) An analysis of cavity growth during open-die hot forging of Ti-6Al-4 V. Metall Mater Trans A 36(6):1567–1574

    Article  Google Scholar 

  34. Kukuryk M (2012) Analysis of deformation and damage evolution in hot elongation forging. Arch Metall Mater 55(2):417–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Javid Mirahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirahmadi, S.J., Hamedi, M. & Ajami, S. Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys. Int J Adv Manuf Technol 74, 995–1004 (2014). https://doi.org/10.1007/s00170-014-6047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6047-5

Keywords

Navigation