Skip to main content

Advertisement

Log in

Energetic Particle Influence on the Earth’s Atmosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

Abbreviations

ACR:

anomalous cosmic ray

CR:

cosmic ray

CRAC:

cosmic ray atmospheric cascade

CME:

coronal mass ejection

CRII:

cosmic rays induced ionization

CIR:

corotating interaction region

CCN:

cloud condensation nuclei

CCM:

chemistry climate model

CGL:

corrected geomagnetic latitude

EAS:

extensive air showers

EPP:

energetic particle precipitation

EPPs:

energetic precipitating particles

EP:

energetic particle

EEP:

energetic electron precipitation

EMIC:

electromagnetic ion cyclotron

EUV:

extreme ultraviolet

GCR:

galactic cosmic ray

GLE:

ground level enhancement

GMIR:

global merged interaction region

GEC:

global electrical circuit

HCS:

heliospheric current sheet

IMF:

interplanetary magnetic field

NM:

neutron monitor

NLC:

noctilucent clouds

PSC:

Polar stratospheric clouds

REP:

relativistic electron precipitation

SA:

solar activity

SCR:

solar cosmic ray

SEP:

solar energetic particle

SPE:

solar proton event

(SEPs event ≡ SPE ≡ SCRs)

References

  • J.A. Abreu, J. Beer, F. Steinhilber, S.M. Tobias, N.O. Weiss, For how long will the current grand maximum of solar activity persist? Geophys. Res. Lett. 352, L20109 (2008). doi:10.1029/2008GL035442

    Article  Google Scholar 

  • O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, M.P. De Pascale, C. De Santis, N. De Simone, V. Di Felice, V. Formato, A.M. Galper, L. Grishantseva, A.V. Karelin, S.V. Koldashov, S. Koldobskiy, S.Y. Krutkov, A.N. Kvashnin, A. Leonov, V. Malakhov, L. Marcelli, A.G. Mayorov, W. Menn, V.V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S.B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y.I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S.A. Voronov, Y.T. Yurkin, J. Wu, G. Zampa, N. Zampa, V.G. Zverev, M.S. Potgieter, E.E. Vos, Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. Astrophys. J. 765, 91 (2013). doi:10.1088/0004-637X/765/2/91

    Article  ADS  Google Scholar 

  • M. Aguilar, G. Alberti, B. Alpat, A. Alvino, G. Ambrosi, K. Andeen, H. Anderhub, L. Arruda, P. Azzarello, A. Bachlechner, et al. First result from the Alpha Magnetic Spectrometer on the International Space Station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110(14), 141102 (2013). doi:10.1103/PhysRevLett.110.141102

    Article  ADS  Google Scholar 

  • H.S. Ahluwalia, Timelines of cosmic ray intensity, Ap, IMF, and sunspot numbers since 1937. J. Geophys. Res. 116, 12106 (2011). doi:10.1029/2011JA017021

    Article  Google Scholar 

  • H.S. Ahluwalia, R.C. Ygbuhay, Testing baseline stability of some neutron monitors in Europe, Africa, and Asia. Adv. Space Res. 51, 1990–1995 (2013). doi:10.1016/j.asr.2013.01.014

    Article  ADS  Google Scholar 

  • A.C. Aikin, Energetic particle-induced enhancements of stratospheric nitric acid. Geophys. Res. Lett. 21, 859–862 (1994). doi:10.1029/94GL00914

    Article  ADS  Google Scholar 

  • A.C. Aikin, Production of stratospheric HNO3 by different ion-molecule reaction mechanisms. J. Geophys. Res. 102, 12921–12926 (1997). doi:10.1029/97JD00419

    Article  ADS  Google Scholar 

  • S.-I. Akasofu, The auroral oval, the auroral substorm, and their relations with the internal structure of the magnetosphere. Planet. Space Sci. 14, 587–595 (1966). doi:10.1016/0032-0633(66)90043-2

    Article  ADS  Google Scholar 

  • M.V. Alania, R. Modzelewska, A. Wawrzynczak, On the Relationship of the 27-day Variations of the Solar Wind Velocity and Galactic Cosmic Ray Intensity in Minimum Epoch of Solar Activity. Sol. Phys. 270, 629–641 (2011). doi:10.1007/s11207-011-9778-6

    Article  ADS  Google Scholar 

  • K. Alanko, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Heliospheric modulation strength: effective neutron monitor energy. Adv. Space Res. 32, 615–620 (2003). doi:10.1016/S0273-1177(03)00348-X

    Article  ADS  Google Scholar 

  • S.Y. Aleksandrin, A.M. Galper, L.A. Grishantzeva, S.V. Koldashov, L.V. Maslennikov, A.M. Murashov, P. Picozza, V. Sgrigna, S.A. Voronov, High-energy charged particle bursts in the near-Earth space as earthquake precursors. Ann. Geophys. 21, 597–602 (2003). doi:10.5194/angeo-21-597-2003

    Article  ADS  Google Scholar 

  • H.R. Anderson, Cosmic ray total ionization, 1970–1972. J. Geophys. Res. 78, 3958–3960 (1973). doi:10.1029/JA078i019p03958

    Article  ADS  Google Scholar 

  • M.E. Andersson, P.T. Verronen, S. Wang, C.J. Rodger, M.A. Clilverd, B.R. Carson, Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004–2009. J. Geophys. Res. 117, D09304 (2012). doi:10.1029/2011JD017246

    ADS  Google Scholar 

  • M.E. Andersson, P.T. Verronen, C.J. Rodger, M.A. Clilverd, S. Wang, Longitudinal hotspots in the mesospheric OH variations due to energetic electron precipitation. Atmos. Chem. Phys. 14, 1095–1105 (2014a). doi:10.5194/acp-14-1095-2014

    Article  ADS  Google Scholar 

  • M.E. Andersson, P.T. Verronen, C.J. Rodger, M.A. Clilverd, A. Seppälä, Missing driver in the Sun-Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat. Commun. 5, 5197 (2014b). doi:10.1038/ncomms6197

    Article  ADS  Google Scholar 

  • K.L. Aplin, M. Lockwood, Cosmic ray modulation of infra-red radiation in the atmosphere. Env. Res. Letts. 8, 015026 (2013). 6 pp. doi:10.1088/1748-9326/8/1/015026

    Article  Google Scholar 

  • E. Arijs, G. Brasseur, Acetonitrile in the stratosphere and implications for positive ion composition. J. Geophys. Res. 91, 4003–4016 (1986). doi:10.1029/JD091iD03p04003

    Article  ADS  Google Scholar 

  • F. Arnold, Ion-induced nucleation of atmospheric water vapor at the mesopause. Planet. Space Sci. 28, 1003–1009 (1980a). doi:10.1016/0032-0633(80)90061-6

    Article  ADS  Google Scholar 

  • F. Arnold, Multi-ion complexes in the stratosphere—implications for trace gases and aerosol. Nature 284, 610 (1980b). doi:10.1038/284610a0

    Article  ADS  Google Scholar 

  • F. Arnold, Solvated electrons in the upper atmosphere. Nature 294, 732 (1981). doi:10.1038/294732a0

    Article  ADS  Google Scholar 

  • F. Arnold, Ion nucleation—a potential source for stratospheric aerosols. Nature 299, 134–137 (1982). doi:10.1038/299134a0

    Article  ADS  Google Scholar 

  • F. Arnold, Atmospheric ions and aerosol formation. Space Sci. Rev. 137, 225–239 (2008). doi:10.1007/s11214-008-9390-8

    Article  ADS  Google Scholar 

  • F. Arnold, T. Buehrke, New \(\mathrm{H}_{2}\mathrm{SO}_{4}\) and \(\mathrm{HSO}_{3}\) vapour measurements in the stratosphere—evidence for a volcanic influence. Nature 301, 293–295 (1983). doi:10.1038/301293a0

    Article  ADS  Google Scholar 

  • F. Arnold, D. Krankowsky, Ion composition and electron- and ion-loss processes in the Earth’s atmosphere, in Dynamical and Chemical Coupling between the Neutral and Ionized Atmosphere, ed. by B. Grandal, A. Holtet, 1977, pp. 93–127

    Chapter  Google Scholar 

  • F. Arnold, A.A. Viggiano, H. Schlager, Implications for trace gases and aerosols of large negative ion clusters in the stratosphere. Nature 297, 371–376 (1982). doi:10.1038/297371a0

    Article  ADS  Google Scholar 

  • F. Arnold, T. Buehrke, S. Qiu, Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichon. Nature 348, 49 (1990). doi:10.1038/348049a0

    Article  ADS  Google Scholar 

  • F. Arnold, A. Kiendler, V. Wiedemer, S. Aberle, T. Stilp, R. Busen, Chemiion concentration measurements in jet engine exhaust at the ground: Implications for ion chemistry and aerosol formation in the wake of a jet aircraft. Geophys. Res. Lett. 27, 1723–1726 (2000). doi:10.1029/1999GL011096

    Article  ADS  Google Scholar 

  • J. Austin, K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, G. Bodeker, C. Brühl, N. Butchart, M. Chipperfield, M. Deushi, V.I. Fomichev, M.A. Giorgetta, L. Gray, K. Kodera, F. Lott, E. Manzini, D. Marsh, K. Matthes, T. Nagashima, K. Shibata, R.S. Stolarski, H. Struthers, W. Tian, Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res. 113, D11306 (2008). doi:10.1029/2007JD009391

    Article  ADS  Google Scholar 

  • D.N. Baker, Effects of the Sun on the Earth’s environment. J. Atmos. Sol.-Terr. Phys. 62, 1669–1681 (2000). doi:10.1016/S1364-6826(00)00119-X

    Article  ADS  Google Scholar 

  • D.N. Baker, T.I. Pulkkinen, Solar disturbances and correlated geospace responses: Relativistic magnetospheric electron acceleration, in Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, ed. by A. Wilson ESA Special Publication, vol. 415, 1997, p. 199

    Google Scholar 

  • D.N. Baker, R.A. Goldberg, F.A. Herrero, J.B. Blake, L.B. Callis, Satellite and rocket studies of relativistic electrons and their influence on the middle atmosphere. J. Atmos. Sol.-Terr. Phys. 55, 1619–1628 (1993). doi:10.1016/0021-9169(93)90167-W

    Article  ADS  Google Scholar 

  • D.N. Baker, J.B. Blake, L.B. Callis, J.R. Cummings, D. Hovestadt, S. Kanekal, B. Klecker, R.A. Mewaldt, Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX. Geophys. Res. Lett. 21, 409–412 (1994). doi:10.1029/93GL03532

    Article  ADS  Google Scholar 

  • D.N. Baker, G.M. Mason, J.E. Mazur, A small spacecraft mission with large accomplishments. Eos 93, 325–326 (2012). doi:10.1029/2012EO340001

    Article  ADS  Google Scholar 

  • D.N. Baker, A.N. Jaynes, X. Li, M.G. Henderson, S.G. Kanekal, G.D. Reeves, H.E. Spence, S.G. Claudepierre, J.F. Fennell, M.K. Hudson, R.M. Thorne, J.C. Foster, P.J. Erickson, D.M. Malaspina, J.R. Wygant, A. Boyd, C.A. Kletzing, A. Drozdov, Y.Y. Shprits, Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations. Geophys. Res. Lett. 41, 1351–1358 (2014). doi:10.1002/2013GL058942

    Article  ADS  Google Scholar 

  • L. Barnard, M. Lockwood, M.A. Hapgood, M.J. Owens, C.J. Davis, F. Steinhilber, Predicting space climate change. Geophys. Res. Lett. 381, L16103 (2011). doi:10.1029/2011GL048489

    ADS  Google Scholar 

  • C. Barth, K. Mankoff, S. Bailey, S. Solomon, Global observations of nitric oxide in the thermosphere. J. Geophys. Res. 108(A1), 1027 (2003). doi:10.1029/2002JA009458

    Article  Google Scholar 

  • A.J.G. Baumgaertner, P. Jöckel, C. Brühl, Energetic particle precipitation in ECHAM5/MESSy1—Part 1: Downward transport of upper atmospheric \(\mathrm{NO}_{x}\) produced by low energy electrons. Atmos. Chem. Phys. 9, 2729–2740 (2009)

    Article  ADS  Google Scholar 

  • A.J.G. Baumgaertner, A. Seppälä, P. Jöckel, M.A. Clilverd, Geomagnetic activity related \(\mathrm{NO}_{x}\) enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmos. Chem. Phys. 11, 4521–4531 (2011). doi:10.5194/acp-11-4521-2011

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, Solar cosmic rays in the near Earth space and the atmosphere. Adv. Space Res. 35, 458–464 (2005). doi:10.1016/j.asr.2004.11.019

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, A.I. Sladkova, On certain features of the energy spectrum of Solar events with relativistic protons. Izv. Akad. Nauk SSSR, Ser. Fiz. 67, 1431–1434 (2003)

    Google Scholar 

  • G.A. Bazilevskaya, A.K. Svirzhevskaya, On the stratospheric measurements of cosmic rays. Space Sci. Rev. 85, 431–521 (1998)

    Article  ADS  Google Scholar 

  • G. Bazilevskaya, A. Svirzhevskaya, Solar cosmic rays in the Earth’s atmosphere as measured in the long-term LPI Balloon Experiment, in EGS General Assembly Conference Abstracts. EGS General Assembly Conference Abstracts, vol. 27, 2002, p. 2827

    Google Scholar 

  • G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, Effects of cosmic rays on the Earth’s environment. J. Atmos. Sol.-Terr. Phys. 62, 1577–1586 (2000). doi:10.1016/S1364-6826(00)00113-9

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, I.G. Usoskin, E.O. Flückiger, R.G. Harrison, L. Desorgher, R. Bütikofer, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, G.A. Kovaltsov, Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149–173 (2008). doi:10.1007/s11214-008-9339-y

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, Solar proton events recorded in the stratosphere during cosmic ray balloon observations in 1957–2008. Adv. Space Res. 45, 603–613 (2010). doi:10.1016/j.asr.2009.11.009

    Article  ADS  Google Scholar 

  • K.V. Beard, H.T. Ochs, C.H. Twohy, Aircraft measurements of high average charges on cloud drops in layer clouds. Geophys. Res. Lett. 31, L14111 (2004). doi:10.1029/2004GL020465

    Article  ADS  Google Scholar 

  • A.V. Belov, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Proc IAU Symp., vol. 257 (2009), pp. 439–450. doi:10.1017/S1743921309029676

    Google Scholar 

  • J.B. Blake, M.D. Looper, D.N. Baker, R. Nakamura, B. Klecker, D. Hovestadt, New high temporal and spatial resolution measurements by SAMPEX of the precipitation of relativistic electrons. Adv. Space Res. 18, 171–186 (1996)

    Article  ADS  Google Scholar 

  • C.B. Boyle, P.H. Reiff, M.R. Hairston, Empirical polar cap potentials. J. Geophys. Res. 102, 111–126 (1997). doi:10.1029/96JA01742

    Article  ADS  Google Scholar 

  • G.P. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere (2005)

    Google Scholar 

  • D.H. Brautigam, M.S. Gussenhoven, D.A. Hardy, A statistical study on the effects of IMF B(z) and solar wind speed on auroral ion and electron precipitation. J. Geophys. Res. 96, 5525–5538 (1991). doi:10.1029/91JA00157

    Article  ADS  Google Scholar 

  • R. Bučík, K. Kudela, S.N. Kuznetsov, Satellite observations of lightning-induced hard X-ray flux enhancements in the conjugate region. Ann. Geophys. 24, 1969–1976 (2006). doi:10.5194/angeo-24-1969-2006

    Article  ADS  Google Scholar 

  • M. Calisto, I. Usoskin, E. Rozanov, T. Peter, Influence of Galactic Cosmic Rays on atmospheric composition and dynamics. Atmos. Chem. Phys. 11, 4547–4556 (2011). doi:10.5194/acp-11-4547-2011

    Article  ADS  Google Scholar 

  • M. Calisto, P.T. Verronen, E. Rozanov, T. Peter, Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. Atmos. Chem. Phys. 12, 8679–8686 (2012). doi:10.5194/acp-12-8679-2012.

    Article  ADS  Google Scholar 

  • L.B. Callis, R.E. Boughner, D.N. Baker, J.B. Blake, J.D. Lambeth, Precipitating relativistic electrons—their long-term effect on stratospheric odd nitrogen levels. J. Geophys. Res. 96, 2939–2976 (1991). doi:10.1029/90JD02184

    Article  ADS  Google Scholar 

  • L.B. Callis, R.E. Boughner, D.N. Baker, R.A. Mewaldt, J. Bernard Blake, R.S. Selesnick, J.R. Cummings, M. Natarajan, G.M. Mason, J.E. Mazur, Precipitating electrons: Evidence for effects on mesospheric odd nitrogen. Geophys. Res. Lett. 23, 1901–1904 (1996). doi:10.1029/96GL01787

    Article  ADS  Google Scholar 

  • L.B. Callis, M. Natarajan, J.D. Lambeth, D.N. Baker, Solar atmospheric coupling by electrons (SOLACE) 2. Calculated stratospheric effects of precipitating electrons, 1979–1988. J. Geophys. Res. 103, 28421–28438 (1998). doi:10.1029/98JD02407

    Article  ADS  Google Scholar 

  • L.B. Callis, M. Natarajan, J.D. Lambeth, Observed and calculated mesospheric NO, 1992–1997. Geophys. Res. Lett. 29 (2), D1030 (2002). doi:10.1029/2001GL013995

    Article  ADS  Google Scholar 

  • J. Calogovic, C. Albert, F. Arnold, J. Beer, L. Desorgher, E.O. Flueckiger, Sudden cosmic ray decreases: No change of global cloud cover. Geophys. Res. Lett. 370, 03802 (2010). doi:10.1029/2009GL041327

    ADS  Google Scholar 

  • H.V. Cane, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55–77 (2000). doi:10.1023/A:1026532125747

    Article  ADS  Google Scholar 

  • K.S. Carslaw, R.G. Harrison, J. Kirkby, Cosmic rays, clouds, and climate. Science 298, 1732–1737 (2002). doi:10.1126/science.1076964

    Article  ADS  Google Scholar 

  • A.N. Charakhchyan, Reviews of topical problems: Investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun. Sov. Phys. Usp. 7, 358–374 (1964)

    Article  ADS  Google Scholar 

  • S.P. Christon, D.J. Williams, D.G. Mitchell, C.Y. Huang, L.A. Frank, Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions. J. Geophys. Res. 96, 1–22 (1991). doi:10.1029/90JA01633

    Article  ADS  Google Scholar 

  • T.G. Chronis, Investigating possible links between incoming cosmic ray fluxes and lightning activity over the United States. J. Climate 22, 5748 (2009). doi:10.1175/2009JCLI2912.1

    Article  ADS  Google Scholar 

  • V.P. Chuprova, S.K. Gerasimova, V.G. Grigoryev, P.A. Krivoshapkin, G.F. Krymsky, V.P. Mamrukova, V.M. Migunov, A.N. Prikhodko, G.V. Shafer, G.V. Skripin, Y.Y. Sorokin, S.A. Starodubtsev, V.E. Timofeev, The brief history of experimental research of cosmic ray variations in Yakutia. Adv. Space Res. 44, 1200–1206 (2009). doi:10.1016/j.asr.2008.12.024

    Article  ADS  Google Scholar 

  • M.A. Clilverd, C.J. Rodger, R.M. Millan, J.G. Sample, M. Kokorowski, M.P. McCarthy, T. Ulich, T. Raita, A.J. Kavanagh, E. Spanswick, Energetic particle precipitation into the middle atmosphere triggered by a coronal mass ejection. J. Geophys. Res. 112, A12206 (2007). doi:10.1029/2007JA012395

    Article  ADS  Google Scholar 

  • M.A. Clilverd, C.J. Rodger, T. Moffat-Griffin, E. Spanswick, P. Breen, F.W. Menk, R.S. Grew, K. Hayashi, I.R. Mann, Energetic outer radiation belt electron precipitation during recurrent solar activity. J. Geophys. Res. 115, A8323 (2010a). doi:10.1029/2009JA015204

    Article  ADS  Google Scholar 

  • M.A. Clilverd, C.J. Rodger, R.J. Gamble, T. Ulich, T. Raita, A. Seppälä, J.C. Green, N.R. Thomson, J.-A. Sauvaud, M. Parrot, Ground-based estimates of outer radiation belt energetic electron precipitation fluxes into the atmosphere. J. Geophys. Res. 115, A12304 (2010b). doi:10.1029/2010JA015638

    Article  ADS  Google Scholar 

  • W.E. Cobb, Evidence of a solar influence on the atmospheric electric elements at Mauna Loa Observatory. Mon. Weather Rev. 95, 905 (1967)

    Article  ADS  Google Scholar 

  • W.E. Cobb, Balloon measurements of the air-earth current density at the South Pole before and after a solar flare, in Conference on Cloud Physics and Atmospheric Electricity, 1978, pp. 552–554

    Google Scholar 

  • D.J. Cooke, J.E. Humble, M.A. Shea, D.F. Smart, N. Lund, I.L. Rasmussen, B. Byrnak, P. Goret, N. Petrou, On cosmic-ray cut-off terminology. Nuovo Cimento C 14, 213–234 (1991)

    Article  ADS  Google Scholar 

  • P.J. Crutzen, Photochemical reactions initiated by and influencing ozone in the troposphere. Tellus 26, 47 (1974)

    Article  ADS  Google Scholar 

  • P.J. Crutzen, I.S.A. Isaksen, G.C. Reid, Solar proton events—stratospheric sources of nitric oxide. Science 189, 457–459 (1975). doi:10.1126/science.189.4201.457

    Article  ADS  Google Scholar 

  • A.C. Cummings, E.C. Stone, Anomalous cosmic rays and solar modulation. Space Sci. Rev. 83, 51–62 (1998)

    Article  ADS  Google Scholar 

  • J. Curtius, R. Weigel, H.-J. Vössing, H. Wernli, A. Werner, C.-M. Volk, P. Konopka, M. Krebsbach, C. Schiller, A. Roiger, H. Schlager, V. Dreiling, S. Borrmann, Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. Atmos. Chem. Phys. 5, 3053–3069 (2005)

    Article  ADS  Google Scholar 

  • P. Dalin, N. Pertsev, V. Romejko, Notes on historical aspects on the earliest known observations of noctilucent clouds. Hist. Geo- Space Sci. 3, 87–97 (2012). doi:10.5194/hgss-3-87-2012

    Article  ADS  Google Scholar 

  • D.W. Datlowe, W.L. Imhof, Cyclotron resonance precipitation of energetic electrons from the inner magnetosphere. J. Geophys. Res. 95, 6477–6491 (1990). doi:10.1029/JA095iA05p06477

    Article  ADS  Google Scholar 

  • M.T. DeLand, E.P. Shettle, G.E. Thomas, J.J. Olivero, Solar backscattered ultraviolet (SBUV) observations of polar mesospheric clouds (PMCs) over two solar cycles. J. Geophys. Res. 108, D8445 (2003). doi:10.1029/2002JD002398

    Article  ADS  Google Scholar 

  • L. Desorgher, E.O. Flückiger, M. Gurtner, M.R. Moser, R. Bütikofer, Atmocosmics: A Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A 20, 6802–6804 (2005). doi:10.1142/S0217751X05030132

    Article  ADS  Google Scholar 

  • L.I. Dorman, Cosmic Rays in the Earth’s Atmosphere and Underground (Kluwer Academic, Dordrecht, 2004)

    Book  Google Scholar 

  • R.H. Eather, The auroral oval—a reevaluation Rev. Geophys. Space Phys. 11, 155–167 (1973). doi:10.1029/RG011i001p00155

    Article  ADS  Google Scholar 

  • T. Egorova, E. Rozanov, Y. Ozolin, A. Shapiro, M. Calisto, T. Peter, W. Schmutz, The atmospheric effects of October 2003 solar proton event simulated with the chemistry-climate model SOCOL using complete and parameterized ion chemistry. J. Atmos. Sol.-Terr. Phys. 73, 356–365 (2011). doi:10.1016/j.jastp.2010.01.009

    Article  ADS  Google Scholar 

  • S. Eichkorn, S. Wilhelm, H. Aufmhoff, K.H. Wohlfrom, F. Arnold, Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett. 29(14), D1698 (2002). doi:10.1029/2002GL015044

    Article  ADS  Google Scholar 

  • F.L. Eisele, Natural and transmission line produced positive ions. J. Geophys. Res. 94, 6309–6318 (1989). doi:10.1029/JD094iD05p06309

    Article  ADS  Google Scholar 

  • B.A. Emery, V. Coumans, D.S. Evans, G.A. Germany, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, W. Xu, Seasonal, Kp, solar wind, and solar flux variations in long-term singlepass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res. 113, A6311 (2008). doi:10.1029/2007JA012866

    Article  ADS  Google Scholar 

  • M.B. Enghoff, H. Svensmark, The role of atmospheric ions in aerosol nucleation a review. Atmos. Chem. Phys. 8, 4911–4923 (2008)

    Article  ADS  Google Scholar 

  • M.B. Enghoff, J.O.P. Pedersen, U.I. Uggerhøj, S.M. Paling, H. Svensmark, Aerosol nucleation induced by a high energy particle beam. Geophys. Res. Lett. 38, L09805 (2011). doi:10.1029/2011GL047036

    Article  ADS  Google Scholar 

  • V. Eyring, J.-F. Lamarque, P. Hess, F. Arfeuille, K. Bowman, M. Chipperfield, B. Duncan, A. Fiore, A. Gettelman, M. Giorgetta, C. Granier, M. Hegglin, D. Kinnison, M. Kunze, U. Langematz, B.-P. Luo, M. Randall, K. Matthes, P. Newman, T. Peter, A. Robock, T. Ryerson, A. Saiz-Lopez, R. Salawitch, M. Schultz, T. Shepherd, D. Shindell, J. Staehelin, S. Tegtmeier, L. Thomason, S. Tilmes, J.-P. Vernier, D.W. Waugh, P.J. Young, Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsl. 40, 48–66 (2013)

    Google Scholar 

  • P. Fabian, J.A. Pyle, R.J. Wells, The August 1972 solar proton event and the atmospheric ozone layer. Nature 277, 458–460 (1979). doi:10.1038/277458a0

    Article  ADS  Google Scholar 

  • W.M. Farrell, M.D. Desch, Solar proton events and the fair weather electric field at ground. Geophys. Res. Lett. 29(9), 1323 (2002). doi:10.1029/2001GL013908

    Article  ADS  Google Scholar 

  • I.I. Feldshtein, I.I. Galperin, An alternative interpretation of auroral precipitation and luminosity observations from the DE, DMSP, AUREOL, and Viking satellites in terms of their mapping to the nightside magnetosphere. J. Atmos. Terr. Phys. 55, 105–121 (1993)

    Article  ADS  Google Scholar 

  • Y.I. Feldstein, Auroral oval. J. Geophys. Res. 78, 1210 (1973). doi:10.1029/JA078i007p01210

    Article  ADS  Google Scholar 

  • E.E. Ferguson, F. Arnold, Ion chemistry of the stratosphere. Acc. Chem. Res. 14, 327–334 (1981)

    Article  Google Scholar 

  • E.E. Ferguson, F.C. Fehsenfeld, D.L. Albritton, Chap. 2—Ion chemistry of the Earth’s atmosphere, in Gas Phase Ion Chemistry, ed. by M.T. Bowers (Academic Press, New York, 1979), pp. 45–82. 978-0-12-120801-1. doi:10.1016/B978-0-12-120801-1.50008-9. http://www.sciencedirect.com/science/article/pii/B9780121208011500089

    Chapter  Google Scholar 

  • J.E. Foat, R.P. Lin, D.M. Smith, F. Fenrich, R. Millan, I. Roth, K.R. Lorentzen, M.P. McCarthy, G.K. Parks, J.P. Treilhou, First detection of a terrestrial MeV X-ray burst. J. Geophys. Res. 25, 4109–4112 (1998). doi:10.1029/1998GL900134

    Google Scholar 

  • B. Fogle, B. Haurwitz, Noctilucent clouds. Space Sci. Rev. 6, 279–340 (1966). doi:10.1007/BF00173768

    Article  ADS  Google Scholar 

  • S.E. Forbush, World-wide cosmic-ray variations, 1937–1952. J. Geophys. Res. 59, 525–542 (1954)

    Article  ADS  Google Scholar 

  • S.E. Forbush, Cosmic-ray intensity variations during Two Solar Cycles. J. Geophys. Res. 63, 651–669 (1958). doi:10.1029/JZ063i004p00651

    Article  ADS  Google Scholar 

  • P.M. Forster, V.I. Fomichev, E. Rozanov, C. Cagnazzo, A.I. Jonsson, U. Langematz, B. Fomin, M.J. Iacono, B. Mayer, E. Mlawer, G. Myhre, R.W. Portmann, H. Akiyoshi, V. Falaleeva, N. Gillett, A. Karpechko, J. Li, P. Lemennais, O. Morgenstern, S. Oberländer, M. Sigmond, K. Shibata, Evaluation of radiation scheme performance within chemistry climate models. J. Geophys. Res. 116, D10302 (2011). doi:10.1029/2010JD015361

    Article  ADS  Google Scholar 

  • H.U. Frey, Localized aurora beyond the auroral oval. Rev. Geophys. 45, 1003 (2007). doi:10.1029/2005RG000174

    Article  ADS  Google Scholar 

  • F. Friederich, M. Sinnhuber, B. Funke, T. von Clarmann, J. Orphal, Local impact of solar variation on \(\mathrm{NO}_{2}\) in the lower mesosphere and upper stratosphere from 2007 to 2012. Atmos. Chem. Phys. 14, 4055–4064 (2014). doi:10.5194/acp-14-4055-2014

    Article  ADS  Google Scholar 

  • C. Fröhlich, J. Lean, The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25, 4377–4380 (1998). doi:10.1029/1998GL900157

    Article  ADS  Google Scholar 

  • B. Funke, M. López-Puertas, S. Gil-López, T. von Clarmann, G.P. Stiller, H. Fischer, S. Kellmann, Downward transport of upper atmospheric \(\mathrm{NO}_{x}\) into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. J. Geophys. Res. 110, D24308 (2005). doi:10.1029/2005JD006463

    Article  ADS  Google Scholar 

  • B. Funke, A. Baumgaertner, M. Calisto, T. Egorova, C.H. Jackman, J. Kieser, A. Krivolutsky, M. López-Puertas, D.R. Marsh, T. Reddmann, E. Rozanov, S.-M. Salmi, M. Sinnhuber, G.P. Stiller, P.T. Verronen, S. Versick, T. von Clarmann, T.Y. Vyushkova, N. Wieters, J.M. Wissing, Composition changes after the Halloween solar proton event: The High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys. 11, 9089–9139 (2011). doi:10.5194/acp-11-9089-2011

    Article  ADS  Google Scholar 

  • B. Funke, M. López-Puertas, G.P. Stiller, T. Clarmann, Mesospheric and stratospheric \(\mathrm{NO}_{y}\) produced by energetic particle precipitation during 2002–2012. J. Geophys. Res. 119, 4429–4446 (2014). doi:10.1002/2013JD021404

    Article  Google Scholar 

  • T. Gaisser, Cosmic Rays and Particle Physics (1990)

    Google Scholar 

  • A.M. Galper, S.V. Koldashov, S.A. Voronov, High energy particle flux variations as earthquake predictors. Adv. Space Res. 15, 131–134 (1995). doi:10.1016/0273-1177(95)00085-S

    Article  ADS  Google Scholar 

  • G.A. Germany, G.K. Parks, H. Ranganath, R. Elsen, P.G. Richards, W. Swift, J.F. Spann, M. Brittnacher, Analysis of auroral morphology: Substorm precursor and onset on January 10, 1997. J. Geophys. Res. 25, 3043–3046 (1998). doi:10.1029/98GL01220

    Google Scholar 

  • S.E. Gibson, G. de Toma, B. Emery, P. Riley, L. Zhao, Y. Elsworth, R.J. Leamon, J. Lei, S. McIntosh, R.A. Mewaldt, B.J. Thompson, D. Webb, The whole heliosphere interval in the context of a long and structured solar minimum: An overview from Sun to Earth. Sol. Phys. 274, 5–27 (2011). doi:10.1007/s11207-011-9921-4

    Article  ADS  Google Scholar 

  • A. Gil, K. Iskra, R. Modzelewska, M.V. Alania, On the 27-day variations of the galactic cosmic ray anisotropy and intensity for different periods of solar magnetic cycle. Adv. Space Res. 35, 687–690 (2005). doi:10.1016/j.asr.2005.03.018

    Article  ADS  Google Scholar 

  • O.H. Gish, Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Electr. 49, 159–168 (1944)

    Article  Google Scholar 

  • L.J. Gray, J. Beer, M. Geller, J.D. Haigh, M. Lockwood, K. Matthes, U. Cubasch, D. Fleitmann, G. Harrison, L. Hood, J. Luterbacher, G.A. Meehl, D. Shindell, B. van Geel, W. White, Solar influence on climate. Rev. Geophys. 48, 4001 (2010). doi:10.1029/2009RG000282

    Article  ADS  Google Scholar 

  • P.K.F. Grieder, Cosmic Rays at Earth (Elsevier, Amsterdam, 2001)

    Google Scholar 

  • W. Gringel, Examinations of electrical conductivity of air taking into account solar activity and the aerosol particle concentration up to heights of 35 km. PhD Thesis, Tuebingen, Universitaet, Fachbereich Physik, Doktor der Naturwissenschaften Dissertation (1978), 108 p. In German (1978)

  • A.V. Gurevich, K.P. Zybin, Runaway breakdown and the mysteries of lightning. Phys. Today 58(5), 37–43 (2005). doi:10.1063/1.1995746

    Article  ADS  Google Scholar 

  • D.A. Hardy, M.S. Gussenhoven, E. Holeman, A statistical model of auroral electron precipitation. J. Geophys. Res. 90, 4229–4248 (1985). doi:10.1029/JA090iA05p04229

    Article  ADS  Google Scholar 

  • D.A. Hardy, M.S. Gussenhoven, R. Raistrick, W.J. McNeil, Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity. J. Geophys. Res. 92, 12275–12294 (1987). doi:10.1029/JA092iA11p12275

    Article  ADS  Google Scholar 

  • D.A. Hardy, M.S. Gussenhoven, D. Brautigam, A statistical model of auroral ion precipitation. J. Geophys. Res. 94, 370–392 (1989). doi:10.1029/JA094iA01p00370

    Article  ADS  Google Scholar 

  • D.A. Hardy, M.S. Gussenhoven, D. Brautigam, W. McNeil, A statistical model of auroral ion precipitation. II—Functional representation of the average patterns. J. Geophys. Res. 96, 5539–5547 (1991). doi:10.1029/90JA02451

    Article  ADS  Google Scholar 

  • R.G. Harrison, Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci. Rev. 94, 381–396 (2000)

    Article  ADS  Google Scholar 

  • R.G. Harrison, The Carnegie curve. Surv. Geophys. 34, 209–232 (2013). doi:10.1007/s10712-012-9210-2

    Article  ADS  Google Scholar 

  • R.G. Harrison, M.H.P. Ambaum, Observed atmospheric electricity effect on clouds. Environ. Res. Lett. 4(1), 014003 (2009). doi:10.1088/1748-9326/4/1/014003

    Article  ADS  Google Scholar 

  • R.G. Harrison, M.H.P. Ambaum, Observing Forbush decreases in cloud at Shetland. J. Atmos. Sol.-Terr. Phys. 72, 1408–1414 (2010). doi:10.1016/j.jastp.2010.09.025

    Article  ADS  Google Scholar 

  • R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 1012 (2003). doi:10.1029/2002RG000114

    Article  ADS  Google Scholar 

  • R.G. Harrison, H. Tammet, Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci. Rev. 137, 107–118 (2008). doi:10.1007/s11214-008-9356-x

    Article  ADS  Google Scholar 

  • R.G. Harrison, I. Usoskin, Solar modulation in surface atmospheric electricity. J. Atmos. Sol.-Terr. Phys. 72, 176–182 (2010). doi:10.1016/j.jastp.2009.11.006

    Article  ADS  Google Scholar 

  • C.J. Hatton, The neutron monitor, in Processes in Elementary Particle and Cosmic Ray Physics, ed. by J.G. Wilson, S.A. Wouthuysen (North-Holland, Amsterdam–London, 1971), pp. 3–100

    Google Scholar 

  • M.G. Heaps, Parametrization of the cosmic ray ion-pair production rate above 18 km. Planet. Space Sci. 26, 513–517 (1978). doi:10.1016/0032-0633(78)90041-7

    Article  ADS  Google Scholar 

  • D.F. Heath, A.J. Krueger, P.J. Crutzen, Solar proton event—influence on stratospheric ozone. Science 197, 886–889 (1977). doi:10.1126/science.197.4306.886

    Article  ADS  Google Scholar 

  • G. Henschen, F. Arnold, New positive ion species in the stratosphere. Nature 291, 211–213 (1981). doi:10.1038/291211a0

    Article  ADS  Google Scholar 

  • A. Hirsikko, T. Nieminen, S. Gagné, K. Lehtipalo, H.E. Manninen, M. Ehn, U. Hõrrak, V.-M. Kerminen, L. Laakso, P.H. McMurry, A. Mirme, S. Mirme, T. Petäjä, H. Tammet, V. Vakkari, M. Vana, M. Kulmala, Atmospheric ions and nucleation: A review of observations. Atmos. Chem. Phys. 11, 767–798 (2011). doi:10.5194/acp-11-767-2011

    Article  ADS  Google Scholar 

  • R.H. Holzworth, F.S. Mozer, Direct evidence of solar flare modification of stratospheric electric fields. J. Geophys. Res. 84, 363–367 (1979). doi:10.1029/JC084iC01p00363

    Article  ADS  Google Scholar 

  • R.H. Holzworth, K.W. Norville, P.R. Williamson, Solar flare perturbations in stratospheric current systems. Geophys. Res. Lett. 14, 852–855 (1987). doi:10.1029/GL014i008p00852

    Article  ADS  Google Scholar 

  • W.A. Hoppel, R.V Anderson, J.C. Willett, Atmospheric Electricity in the Planetary Boundary Layer (The National Academies Press, Washington, 1986). 9780309036801

    Google Scholar 

  • R.B. Horne, R.M. Thorne, Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30, L1527 (2003). doi:10.1029/2003GL016973

    Article  ADS  Google Scholar 

  • R.B. Horne, M.M. Lam, J.C. Green, Energetic electron precipitation from the outer radiation belt during geomagnetic storms. Geophys. Res. Lett. 36, L19104 (2009). doi:10.1029/2009GL040236

    Article  ADS  Google Scholar 

  • H. Hu, R.H. Holzworth, Observations and parameterization of the stratospheric electrical conductivity. J. Geophys. Res. 101, 29539–29552 (1996). doi:10.1029/96JD01060

    Article  ADS  Google Scholar 

  • T. Iijima, T.A. Potemra, Field-aligned currents in the dayside cusp observed by Triad. J. Geophys. Res. 81, 5971–5979 (1976a). doi:10.1029/JA081i034p05971

    Article  ADS  Google Scholar 

  • T. Iijima, T.A. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 81, 2165–2174 (1976b). doi:10.1029/JA081i013p02165

    Article  ADS  Google Scholar 

  • W.L. Imhof, H.D. Voss, J. Mobilia, D.W. Datlowe, E.E. Gaines, The precipitation of relativistic electrons near the trapping boundary. J. Geophys. Res. 96, 5619–5629 (1991). doi:10.1029/90JA02343

    Article  ADS  Google Scholar 

  • IPCC, Climate Change 2007—The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Cambridge University Press, Cambridge, 2007), 996 pp.

    Google Scholar 

  • IPCC, Climate Change 2013—The Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by T.F. Stocker, D. Qin, G.-K.. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia V. Bex P.M. Midgley (Cambridge University Press, Cambridge, 2013), 1029 pp.

    Google Scholar 

  • C.H. Jackman, J.E. Frederick, R.S. Stolarski, Production of odd nitrogen in the stratosphere and mesosphere—an intercomparison of source strengths. J. Geophys. Res. 85, 7495–7505 (1980). doi:10.1029/JC085iC12p07495

    Article  ADS  Google Scholar 

  • C.H. Jackman, A.R. Douglass, R.B. Rood, R.D. McPeters, P.E. Meade, Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model. J. Geophys. Res. 95, 7417–7428 (1990)

    Article  ADS  Google Scholar 

  • C.H. Jackman, M.C. Cerniglia, J.E. Nielsen, D.J. Allen, J.M. Zawodny, R.D. McPeters, A.R. Douglass, J.E. Rosenfield, R.B. Rood, Two-dimensional and three-dimensional model simulations, measurements, and interpretation of the influence of the October 1989 solar proton events on the middle atmosphere. J. Geophys. Res. 100, 11641–11660 (1995). doi:10.1029/95JD00369

    Article  ADS  Google Scholar 

  • C.H. Jackman, R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, J.M. Russell, Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event. Geophys. Res. Lett. 28, 2883–2886 (2001). doi:10.1029/2001GL013221

    Article  ADS  Google Scholar 

  • C.H. Jackman, M.T. Deland, G.J. Labow, E.L. Fleming, D.K. Weisenstein, M.K.W. Ko, M. Sinnhuber, J.M. Russell, Neutral atmospheric influences of the solar proton events in October-November 2003. J. Geophys. Res. 110, A09S27 (2005). doi:10.1029/2004JA010888

    Article  Google Scholar 

  • C.H. Jackman, C.E. Randall, V.L. Harvey, S. Wang, E.L. Fleming, M. López-Puertas, B. Funke, P.F. Bernath, Middle atmospheric changes caused by the January and March 2012 solar proton events. Atmos. Chem. Phys. 14, 1025–1038 (2014). doi:10.5194/acp-14-1025-2014

    Article  ADS  Google Scholar 

  • J.F. Janni, Proton range-energy tables, 1 keV–10 GeV, energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. Part I. For 63 compounds. At. Data Nucl. Data Tables 27, 147–339 (1982)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, J. Kóta, Three-dimensional cosmic-ray simulations: Heliographic latitude and current-sheet tilt. Space Sci. Rev. 72, 379–384 (1995). doi:10.1007/BF00768808

    Article  ADS  Google Scholar 

  • F.W. Jones, Comparison of two solutions of a geomagnetic problem. Geophys. J. Int. 39, 623–624 (1974). doi:10.1111/j.1365-246X.1974.tb05478.x

    Article  ADS  Google Scholar 

  • A.P. Jordan, H.E. Spence, J.B. Blake, D.N.A. Shaul, Revisiting two-step Forbush decreases. J. Geophys. Res. 116, 11103 (2011). doi:10.1029/2011JA016791

    Article  Google Scholar 

  • J. Kazil, E. Kopp, S. Chabrillat, J. Bishop, The University of Bern Atmospheric Ion Model: Time-dependent modeling of the ions in the mesosphere and lower thermosphere. J. Geophys. Res. 108, D4432 (2003). doi:10.1029/2002JD003024

    Article  ADS  Google Scholar 

  • J. Kazil, E.R. Lovejoy, M.C. Barth, K. O’Brien, Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos. Chem. Phys. 6, 4905–4924 (2006)

    Article  ADS  Google Scholar 

  • J. Kazil, R.G. Harrison, E.R. Lovejoy, Tropospheric new particle formation and the role of ions. Space Sci. Rev. 137, 241–255 (2008). doi:10.1007/s11214-008-9388-2

    Article  ADS  Google Scholar 

  • J. Kazil, K. Zhang, P. Stier, J. Feichter, U. Lohmann, K. O’Brien, The present-day decadal solar cycle modulation of Earth’s radiative forcing via charged \(\mathrm{H}_{2}\mathrm{SO}_{4}\)/\(\mathrm{H}_{2}\mathrm{O}\) aerosol nucleation. Geophys. Res. Lett. 39, L2805 (2012). doi:10.1029/2011GL050058

    Article  ADS  Google Scholar 

  • J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagne, L. Ickes, A. Kurten, A. Kupc, A. Metzger, F. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, A. Downard, M. Ehn, R.C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E.R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkila, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petaja, R. Schnitzhofer, J.H. Seinfeld, M. Sipila, Y. Stozhkov, F. Stratmann, A. Tome, J. Vanhanen, Y. Viisanen, A. Vrtala, P.E. Wagner, H. Walther, E. Weingartner, H. Wex, P.M. Winkler, K.S. Carslaw, D.R. Worsnop, U. Baltensperger, M. Kulmala, Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476(7361), 429–433 (2011). doi:10.1038/nature10343.

    Article  ADS  Google Scholar 

  • S. Kirkwood, P. Dalin, A. Réchou, Noctilucent clouds observed from the UK and Denmark—trends and variations over 43 years. Ann. Geophys. 26, 1243–1254 (2008). doi:10.5194/angeo-26-1243-2008

    Article  ADS  Google Scholar 

  • N.G. Kleimenova, O.V. Kozyreva, S. Michnowski, M. Kubicki, Effect of magnetic storms in variations in the atmospheric electric field at midlatitudes. Geomagn. Aeron. 48, 622–630 (2008). doi:10.1134/S0016793208050071

    Article  ADS  Google Scholar 

  • C.A. Kletzing, J.D. Scudder, E.E. Dors, C. Curto, Auroral source region: Plasma properties of the high-latitude plasma sheet. J. Geophys. Res. 108, A1360 (2003). doi:10.1029/2002JA009678

    Article  ADS  Google Scholar 

  • N.N. Klimin, V.Y. Rivkind, V.A. Pachin, Collision efficiency calculation model as a software tool for microphysics of electrified clouds. Meteorol. Atmos. Phys. 53, 111–120 (1994). doi:10.1007/BF01031908

    Article  ADS  Google Scholar 

  • M. Kokorowski, J.G. Sample, R.H. Holzworth, E.A. Bering, S.D. Bale, J.B. Blake, A.B. Collier, A.R.W. Hughes, E. Lay, R.P. Lin, M.P. McCarthy, R.M. Millan, H. Moraal, T.P. O’Brien, G.K. Parks, M. Pulupa, B.D. Reddell, D.M. Smith, P.H. Stoker, L. Woodger, Rapid fluctuations of stratospheric electric field following a solar energetic particle event. Geophys. Res. Lett. 33, L20105 (2006). doi:10.1029/2006GL027718

    Article  ADS  Google Scholar 

  • J.E. Kristjánsson, C.W. Stjern, F. Stordal, A.M. Fjæraa, G. Myhre, K. Jónasson, Cosmic rays, cloud condensation nuclei and clouds—a reassessment using MODIS data. Atmos. Chem. Phys. 8, 7373–7387 (2008)

    Article  ADS  Google Scholar 

  • A.A. Krivolutsky, Cosmic ray influence on chemical composition of the atmosphere of the Earth. Adv. Space Res. 27, 1993–2002 (2001). doi:10.1016/S0273-1177(01)00296-4

    Article  ADS  Google Scholar 

  • A.A. Krivolutsky, A.I. Repnev, Impact of space energetic particles on the Earth’s atmosphere (a review). Geomagn. Aeron. 52, 685–716 (2012). doi:10.1134/S0016793212060060

    Article  ADS  Google Scholar 

  • A. Krivolutsky, A. Kuminov, T. Vyushkova, Ionization of the atmosphere caused by solar protons and its influence on ozonosphere of the Earth during 1994–2003. J. Atmos. Sol.-Terr. Phys. 67, 105–117 (2005). doi:10.1016/j.jastp.2004.08.004

    Article  ADS  Google Scholar 

  • A.A. Krivolutsky, A.V. Klyuchnikova, G.R. Zakharov, T.Y. Vyushkova, A.A. Kuminov, Dynamical response of the middle atmosphere to solar proton event of July 2000: Three-dimensional model simulations. Adv. Space Res. 37, 1602–1613 (2006). doi:10.1016/j.asr.2005.05.115

    Article  ADS  Google Scholar 

  • A.A. Krivolutsky, A.A. Kuminov, A.A. Kukoleva, A.I. Repnev, N.K. Pereyaslova, M.N. Nazarova, Solar proton activity during cycle 23 and changes in the ozonosphere: Numerical simulation and analysis of observational data. Geomagn. Aeron. 48, 432–445 (2008). doi:10.1134/S0016793208040038

    Article  ADS  Google Scholar 

  • L. Laakso, T. Anttila, K.E.J. Lehtinen, P.P. Aalto, M. Kulmala, U. Hõrrak, J. Paatero, M. Hanke, F. Arnold, Kinetic nucleation and ions in boreal forest particle formation events. Atmos. Chem. Phys. 4, 2353–2366 (2004)

    Article  ADS  Google Scholar 

  • B. Laken, D. Kniveton, A. Wolfendale, Forbush decreases, solar irradiance variations, and anomalous cloud changes. J. Geophys. Res. 116, D9201 (2011). doi:10.1029/2010JD014900

    Article  ADS  Google Scholar 

  • B.A. Laken, E. Pallé, J. Čalogović, E.M. Dunne, A cosmic ray-climate link and cloud observations. J. Space Weather Space Clim. 2(26), 260000 (2012). doi:10.1051/swsc/2012018

    Google Scholar 

  • D.J. Lary, Catalytic destruction of stratospheric ozone. J. Geophys. Res. 102, 21515 (1997). doi:10.1029/97JD00912

    Article  ADS  Google Scholar 

  • J. Laštovička, P. Križan, Geomagnetic storms, Forbush decreases of cosmic rays and total ozone at northern higher middle latitudes. J. Atmos. Sol.-Terr. Phys. 67, 119–124 (2005). doi:10.1016/j.jastp.2004.07.021

    Article  ADS  Google Scholar 

  • L.L. Lazutin, X-ray emission of auroral electrons and magnetospheric dynamics. Phys. Chem. Space, vol. 14 (Springer, Berlin, 1986), p. 220

    Google Scholar 

  • S.-H. Lee, J.M. Reeves, J.C. Wilson, D.E. Hunton, A.A. Viggiano, T.M. Miller, J.O. Ballenthin, L.R. Lait, Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301, 1886–1889 (2003). doi:10.1126/science.1087236

    Article  ADS  Google Scholar 

  • K. Liou, P.T. Newell, D.G. Sibeck, C.-I. Meng, M. Brittnacher, G. Parks, Observation of IMF and seasonal effects in the location of auroral substorm onset. J. Geophys. Res. 106, 5799–5810 (2001). doi:10.1029/2000JA003001

    Article  ADS  Google Scholar 

  • J.A. Lockwood, W.R. Webber, L. Hsieh, Solar flare proton rigidity spectra deduced from cosmic ray neutron monitor observations. J. Geophys. Res. 79, 4149–4155 (1974). doi:10.1029/JA079i028p04149

    Article  ADS  Google Scholar 

  • M. Lockwood, M.J. Owens, L. Barnard, C.J. Davis, F. Steinhilber, The persistence of solar activity indicators and the descent of the Sun into Maunder Minimum conditions. Geophys. Res. Lett. 38, L22105 (2011). doi:10.1029/2011GL049811

    Article  ADS  Google Scholar 

  • Y. Logachev, Catalogues of Solar Proton Events (IZMIRAN, Moscow, 1982)

    Google Scholar 

  • Y. Logachev, Catalogues of Solar Proton Events (WDC B, Moscow, 1990)

    Google Scholar 

  • Y. Logachev, Catalogues of Solar Proton Events (Moscow University Press, Moscow, 1998)

    Google Scholar 

  • M. López-Puertas, B. Funke, S. Gil-López, T. von Clarmann, G.P. Stiller, M. Höpfner, S. Kellmann, G. Mengistu Tsidu, H. Fischer, C.H. Jackman, \(\mathrm{HNO}_{3}\), \(\mathrm{N}_{2}\mathrm{O}_{5}\), and \(\mathrm{ClONO}_{2}\) enhancements after the October-November 2003 solar proton events. J. Geophys. Res. 110, A9 (2005). doi:10.1029/2005JA011051

    Google Scholar 

  • K.R. Lorentzen, M.D. Looper, J.B. Blake, Relativistic electron microbursts during the GEM storms. J. Geophys. Res. 28, 2573–2576 (2001). doi:10.1029/2001GL012926

    Google Scholar 

  • E.R. Lovejoy, J. Curtius, K.D. Froyd, Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res. 109, D8204 (2004). doi:10.1029/2003JD004460

    Article  ADS  Google Scholar 

  • A.T.Y. Lui, W.W. Lai, K. Liou, C.I. Meng, A new technique for short-term forecast of auroral activity. Geophys. Res. Lett. 30, L1258 (2003). doi:10.1029/2002GL016505

    Article  ADS  Google Scholar 

  • L.R. Lyons, Magnetospheric processes leading to precipitation. Space Sci. Rev. 80(1–2), 109–132 (1997). doi:10.1023/A:1004977704864

    Article  ADS  Google Scholar 

  • V.S. Makhmutov, G.A. Bazilevskaya, M.B. Krainev, Characteristics of energetic electron precipitation into the Earth’s polar atmosphere and geomagnetic conditions. Adv. Space Res. 31, 1087–1092 (2003). doi:10.1016/S0273-1177(02)00814-1

    Article  ADS  Google Scholar 

  • V.S. Makhmutov, G.A. Bazilevskaya, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, Long-term balloon cosmic ray experiment: Results of analysis of energetic electron precipitation events. Int. J. Mod. Phys. A 20, 6843–6845 (2005). doi:10.1142/S0217751X05030260

    Article  ADS  Google Scholar 

  • F. Märcz, Short-term changes in atmospheric electricity associated with Forbush decreases. J. Atmos. Sol.-Terr. Phys. 59, 975–982 (1997). doi:10.1016/S1364-6826(96)00076-4

    Article  ADS  Google Scholar 

  • R. Markson, Solar modulation of atmospheric electrification and possible implications for the Sun-weather relationship. Nature 273, 103–109 (1978). doi:10.1038/273103a0

    Article  ADS  Google Scholar 

  • R. Markson, Modulation of the Earth’s electric field by cosmic radiation. Nature 291, 304–308 (1981). doi:10.1038/291304a0

    Article  ADS  Google Scholar 

  • R. Markson, M. Muir, Solar wind control of the Earth’s electric field. Science 208, 979–990 (1980). doi:10.1126/science.208.4447.979

    Article  ADS  Google Scholar 

  • N. Marsh, H. Svensmark, Cosmic rays, clouds, and climate. Space Sci. Rev. 94, 215–230 (2000)

    Article  ADS  Google Scholar 

  • D.R. Marsh, R.R. Garcia, D.E. Kinnison, B.A. Boville, F. Sassi, S.C. Solomon, K. Matthes, Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res. 112, D23306 (2007). doi:10.1029/2006JD008306

    Article  ADS  Google Scholar 

  • K.G. McCracken, J. Beer, Long-term changes in the cosmic ray intensity at Earth, 1428–2005. J. Geophys. Res. 112, A10101 (2007). doi:10.1029/2006JA012117

    Article  ADS  Google Scholar 

  • S.B. Mende, H.U. Frey, T.J. Immel, J.-C. Gerard, B. Hubert, S.A. Fuselier, Global imaging of proton and electron aurorae in the far ultraviolet. Space Sci. Rev. 109, 211–254 (2003). doi:10.1023/B:SPAC.0000007520.23689.08

    Article  ADS  Google Scholar 

  • N.P. Meredith, R.B. Horne, M.M. Lam, M.H. Denton, J.E. Borovsky, J.C. Green, Energetic electron precipitation during high-speed solar wind stream driven storms. J. Geophys. Res. 116, A5223 (2011). doi:10.1029/2010JA016293

    Article  ADS  Google Scholar 

  • R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, D.K. Haggerty, M.I. Desai, Long-term fluences of solar energetic particles from H to Fe. Space Sci. Rev. 130, 323–328 (2007). doi:10.1007/s11214-007-9200-8

    Article  ADS  Google Scholar 

  • R.M. Millan, R.M. Thorne, Review of radiation belt relativistic electron losses. J. Atmos. Sol.-Terr. Phys. 69, 362–377 (2007). doi:10.1016/j.jastp.2006.06.019

    Article  ADS  Google Scholar 

  • R.M. Millan, R.P. Lin, D.M. Smith, K.R. Lorentzen, M.P. McCarthy, X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys. Res. Lett. 29, L2194 (2002). doi:10.1029/2002GL015922

    Article  ADS  Google Scholar 

  • R.M. Millan, R.P. Lin, D.M. Smith, M.P. McCarthy, Observation of relativistic electron precipitation during a rapid decrease of trapped relativistic electron flux. Geophys. Res. Lett. 34, 10101 (2007). doi:10.1029/2006GL028653

    Article  ADS  Google Scholar 

  • I.A. Mironova, I.G. Usoskin, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: A case study. Atmos. Chem. Phys. 13, 8543–8550 (2013). doi:10.5194/acp-13-8543-2013

    Article  ADS  Google Scholar 

  • I.A. Mironova, I.G. Usoskin, Possible effect of strong solar energetic particle events on polar stratospheric aerosol: A summary of observational results. Environ. Res. Lett. 9(1), 015002 (2014). doi:10.1088/1748-9326/9/1/015002

    Article  ADS  Google Scholar 

  • I.A. Mironova, L. Desorgher, I.G. Usoskin, E.O. Flückiger, R. Bütikofer, Variations of aerosol optical properties during the extreme solar event in January 2005. Geophys. Res. Lett. 35, L18610 (2008). doi:10.1029/2008GL035120

    Article  ADS  Google Scholar 

  • I.A. Mironova, I.G. Usoskin, G.A. Kovaltsov, S.V. Petelina, Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: Direct observational evidence. Atmos. Chem. Phys. 12, 769–778 (2012). doi:10.5194/acp-12-769-2012

    Article  ADS  Google Scholar 

  • L.I. Miroshnichenko, J.A. Perez-Peraza, Astrophysical aspects in the studies of solar cosmic rays. Int. J. Mod. Phys. A 23, 1–141 (2008). doi:10.1142/S0217751X08037312

    Article  ADS  Google Scholar 

  • A. Mishev, I. Usoskin, Computations of cosmic ray propagation in the Earth’s atmosphere, towards a GLE analysis. J. Phys. Conf. Ser. 409(1), 012152 (2013). doi:10.1088/1742-6596/409/1/012152

    Article  ADS  Google Scholar 

  • A.L. Mishev, P.I.Y. Velinov, Normalized ionization yield function for various nuclei obtained with full Monte Carlo simulations. Adv. Space Res. 48, 19–24 (2011). doi:10.1016/j.asr.2011.02.008

    Article  ADS  Google Scholar 

  • H. Moraal, M.S. Potgieter, P.H. Stoker, A.J. van der Walt, Neutron monitor latitude survey of cosmic ray intensity during the 1986/1987 solar minimum. J. Geophys. Res. 94, 1459–1464 (1989). doi:10.1029/JA094iA02p01459

    Article  ADS  Google Scholar 

  • H. Moraal, A. Belov, J.M. Clem, Design and co-ordination of multi-station international neutron monitor networks. Space Sci. Rev. 93, 285–303 (2000). doi:10.1023/A:1026504814360

    Article  ADS  Google Scholar 

  • O. Morgenstern, M.A. Giorgetta, K. Shibata, V. Eyring, D.W. Waugh, T.G. Shepherd, H. Akiyoshi, J. Austin, A.J.G. Baumgaertner, S. Bekki, P. Braesicke, C. Brühl, M.P. Chipperfield, D. Cugnet, M. Dameris, S. Dhomse, S.M. Frith, H. Garny, A. Gettelman, S.C. Hardiman, M.I. Hegglin, P. Jöckel, D.E. Kinnison, J.-F. Lamarque, E. Mancini, E. Manzini, M. Marchand, M. Michou, T. Nakamura, J.E. Nielsen, D. Olivié, G. Pitari, D.A. Plummer, E. Rozanov, J.F. Scinocca, D. Smale, H. Teyssèdre, M. Toohey, W. Tian, Y. Yamashita, Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res. 115, D00M02 (2010). doi:10.1029/2009JD013728

    Google Scholar 

  • R.P. Mühleisen, The Global Circuit and Its Parameters (Dietrich Steinkopff Verlag, Darmstadt, 1977), pp. 467–476. 3798504350

    Google Scholar 

  • R. Nakamura, N.D. Baker, J.B. Blake, S. Kanekal, B. Klecker, D. Hovestadt, Relativistic electron precipitation enhancements near the outer edge of the radiation belt. Geophys. Res. Lett. 22, 1129–1132 (1995). doi:10.1029/95GL00378

    Article  ADS  Google Scholar 

  • R. Nakamura, M. Isowa, Y. Kamide, D.N. Baker, J.B. Blake, M. Looper, SAMPEX observations of precipitation bursts in the outer radiation belt. Geophys. Res. Lett. 105, 15875–15886 (2000). doi:10.1029/2000JA900018

    Article  Google Scholar 

  • H.V. Neher, Cosmic-ray particles that changed from 1954 to 1958 to 1965. J. Geophys. Res. 72, 1527 (1967). doi:10.1029/JZ072i005p01527

    Article  ADS  Google Scholar 

  • H.V. Neher, Cosmic rays at high latitudes and altitudes covering four solar maxima. J. Geophys. Res. 76, 1637–1651 (1971). doi:10.1029/JA076i007p01637

    Article  ADS  Google Scholar 

  • J. Nevalainen, I.G. Usoskin, A. Mishev, Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv. Space Res. 52, 22–29 (2013). doi:10.1016/j.asr.2013.02.020

    Article  ADS  Google Scholar 

  • P.T. Newell, Y.I. Feldstein, Y.I. Galperin, C.-I. Meng, Morphology of nightside precipitation. J. Geophys. Res. 101, 10737–10748 (1996). doi:10.1029/95JA03516

    Article  ADS  Google Scholar 

  • P.T. Newell, C.-I. Meng, K.M. Lyons, Suppression of discrete aurorae by sunlight. Nature 381, 766–767 (1996). doi:10.1038/381766a0

    Article  ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora. AGU Fall Meeting Abstracts, 1511 (2009)

  • P.T. Newell, T. Sotirelis, K. Liou, A.R. Lee, S. Wing, J. Green, R. Redmon, Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images. Space Weather 8, 12004 (2010). doi:10.1029/2010SW000604

    Article  ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora. J. Geophys. Res. 115, A3216 (2010). doi:10.1029/2009JA014805

    Article  ADS  Google Scholar 

  • M. Nicolet, On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere. Planet. Space Sci. 23, 637–649 (1975). doi:10.1016/0032-0633(75)90104-X

    Article  ADS  Google Scholar 

  • K.A. Nicoll, R.G. Harrison, Experimental determination of layer cloud edge charging from cosmic ray ionisation. Geophys. Res. Lett. 37, L13802 (2010). doi:10.1029/2010GL043605

    Article  ADS  Google Scholar 

  • H. Nieder, H. Winkler, D.R. Marsh, M. Sinnhuber, \(\mathrm{NO}_{x}\) production due to energetic particle precipitation in the MLT region: Results from ion chemistry model studies. J. Geophys. Res. 119, 2137–2148 (2014). doi:10.1002/2013JA019044

    Article  Google Scholar 

  • K. O’Brien, Secular variations in the production of cosmogenic isotopes in the earth’s atmosphere. J. Geophys. Res. 84, 423–431 (1979)

    Article  ADS  Google Scholar 

  • D.E. Olson, The evidence for auroral effects on atmospheric electricity. Pure Appl. Geophys. 84, 118–138 (1971). doi:10.1007/BF00875461

    Article  ADS  Google Scholar 

  • Y.E. Ozolin, I.L. Karol’, E.V. Rozanov, T.A. Egorova, A model of the impact of solar proton events on the ionic and gaseous composition of the mesosphere. Izv., Atmos. Ocean. Phys. 45, 737–750 (2009). doi:10.1134/S0001433809060073

    Article  Google Scholar 

  • Particle Data Group, Review of particle physics. Phys. Lett. B 592, 228–234 (2004). doi:10.1016/j.physletb.2004.06.001

    ADS  Google Scholar 

  • W.D. Pesnell, R.A. Goldberg, C.H. Jackman, D.L. Chenette, E.E. Gaines, A search of UARS data for ozone depletions caused by the highly relativistic electron precipitation events of May 1992. J. Geophys. Res. 104, 165–176 (1999). doi:10.1029/1998JA900030

    Article  ADS  Google Scholar 

  • W.D. Pesnell, R.A. Goldberg, C.H. Jackman, D.L. Chenette, E.E. Gaines, Variation of mesospheric ozone during the highly relativistic electron event in May 1992 as measured by the High Resolution Doppler Imager instrument on UARS. J. Geophys. Res. 105, 22943–22954 (2000). doi:10.1029/2000JA000091

    Article  ADS  Google Scholar 

  • J.R. Pierce, P.J. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett. 36, L9820 (2009). doi:10.1029/2009GL037946

    Article  ADS  Google Scholar 

  • C. Plainaki, A. Belov, E. Eroshenko, H. Mavromichalaki, V. Yanke, Modeling ground level enhancements: Event of 20 January 2005. J. Geophys. Res. 112, A4102 (2007). doi:10.1029/2006JA011926

    Article  ADS  Google Scholar 

  • H.S. Porter, C.H. Jackman, A.E.S. Green, Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys. 65, 154–167 (1976). doi:10.1063/1.432812

    Article  ADS  Google Scholar 

  • M. Potgieter, Solar Modulation of Cosmic Rays. Living Rev. Sol. Phys. 10, 3 (2013). doi:10.12942/lrsp-2013-3

    ADS  Google Scholar 

  • G.W. Prölss, Space weather effects in the upper atmosphere: Low and middle latitudes, in Space Weather: The Physics Behind a Slogan, ed. by K. Scherer, H. Fichter, B. Herber Lecture Notes in Physics, vol. 656 (Springer, Berlin, 2004), p. 193. doi:10.1007/b100037

    Google Scholar 

  • M. Quack, M.-B. Kallenrode, M. von Koenig, K. Kuenzi, J. Burrows, B. Heber, E. Wolff, Ground level events and consequences for stratospheric chemistry, in International Cosmic Ray Conference, vol. 10, 2001, p. 4023

    Google Scholar 

  • C.E. Randall, V.L. Harvey, C.S. Singleton, S.M. Bailey, P.F. Bernath, M. Codrescu, H. Nakajima, J.M. Russell, Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. J. Geophys. Res. 112, D8308 (2007). doi:10.1029/2006JD007696

    Article  ADS  Google Scholar 

  • J.B. Reagan, R.E. Meyerott, R.W. Nightingale, R.C. Gunton, R.G. Johnson, J.E. Evans, W.L. Imhof, D.F. Heath, A.J. Krueger, Effects of the August 1972 solar particle events on stratospheric ozone. J. Geophys. Res. 86, 1473–1494 (1981). doi:10.1029/JA086iA03p01473

    Article  ADS  Google Scholar 

  • J.B. Reagan, R.E. Meyerott, J.E. Evans, W.L. Imhof, R.G. Joiner, The effects of energetic particle precipitation on the atmospheric electric circuit. J. Geophys. Res. 88, 3869–3878 (1983). doi:10.1029/JC088iC06p03869

    Article  ADS  Google Scholar 

  • T. Reddmann, R. Ruhnke, S. Versick, W. Kouker, Modeling disturbed stratospheric chemistry during solar-induced \(\mathrm{NO}_{x}\) enhancements observed with MIPAS/ENVISAT. J. Geophys. Res. 115, D00I11 (2010). doi:10.1029/2009JD012569

    Article  Google Scholar 

  • G.D. Reeves, M.G. Taylor, R.H. Friedel, Y. Chen, Relativistic electron equatorial phase space densities gradients from 4 to 20 Re. AGU Fall Meeting Abstracts, 488 (2003)

  • R. Reiter, Solar flares and their impact on potential gradient and air-earth current characteristics at high mountain stations. Pure Appl. Geophys. 72, 259–267 (1969). doi:10.1007/BF00875709

    Article  ADS  Google Scholar 

  • A.I. Repnev, A.A. Krivolutsky, Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin (Review). Izv., Atmos. Ocean. Phys. 46, 535–562 (2010). doi:10.1134/S0001433810050014

    Article  Google Scholar 

  • J.D. Richardson, J.C. Kasper, A.J. Lazarus, K.I. Paularena, A. Wallace, Solar cycle variation of shocks in the heliosphere. AGU Fall Meeting Abstracts, 1 (2001)

  • H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (1969)

    Google Scholar 

  • R.G. Roble, On solar-terrestrial relationships in atmospheric electricity. J. Geophys. Res. 90, 6000–6012 (1985). doi:10.1029/JD090iD04p06000

    Article  ADS  Google Scholar 

  • R.G. Roble, I. Tzur, The Global Atmospheric-Electrical Circuit (The National Academies Press, Washington D.C., 1986), pp. 206–231. ISBN: 9780309036801

    Google Scholar 

  • C.J. Rodger, M.A. Clilverd, D. Nunn, P.T. Verronen, J. Bortnik, E. Turunen, Storm time, short-lived bursts of relativistic electron precipitation detected by subionospheric radio wave propagation. J. Geophys. Res. 112, A7301 (2007). doi:10.1029/2007JA012347

    Article  ADS  Google Scholar 

  • C.J. Rodger, M.A. Clilverd, J.C. Green, M.M. Lam, Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere. J. Geophys. Res. 115, A4202 (2010). doi:10.1029/2008JA014023

    Article  ADS  Google Scholar 

  • B. Rossi, System of units for nuclear and cosmic-ray phenomena. Phys. Rev. 57, 660 (1940). doi:10.1103/PhysRev.57.660

    Article  ADS  Google Scholar 

  • R. Roussel-Dupré, J.J. Colman, E. Symbalisty, D. Sentman, V.P. Pasko, Physical processes related to discharges in planetary atmospheres. Space Sci. Rev. 137, 51–82 (2008). doi:10.1007/s11214-008-9385-5

    Article  ADS  Google Scholar 

  • E. Rozanov, M. Calisto, T. Egorova, T. Peter, W. Schmutz, Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 33, 483–501 (2012). doi:10.1007/s10712-012-9192-0

    Article  ADS  Google Scholar 

  • E.V. Rozanov, T.A. Egorova, A.I. Shapiro, W.K. Schmutz, Modeling of the atmospheric response to a strong decrease of the solar activity, in Comparative Magnetic Minima: Characterizing Quite Times in the Sun and Stars, ed. by C.H. Mandrini, D.F. Webb Proceedings of the International Astronomical Union, vol. 6 (Cambridge University Press, Cambridge, 2012), pp. 215–224. 286th Symposium of the International-Astronomical-Union, Mendoza, Argentina, Oct. 03–07, 2011. 978-1-107-01986-7. doi:10.1017/S1743921312004863

    Google Scholar 

  • D.W. Rusch, J.-C. Gerard, S. Solomon, P.J. Crutzen, G.C. Reid, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. I—Odd nitrogen. Planet. Space Sci. 29, 767–774 (1981). doi:10.1016/0032-0633(81)90048-9

    Article  ADS  Google Scholar 

  • M.J. Rycroft, K.A. Nicoll, K.L. Aplin, R.G. Harrison, Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. (2012). doi:10.1016/j.jastp.2012.03.015

  • K. Schlegel, G. Diendorfer, S. Thern, M. Schmidt, Thunderstorms, lightning and solar activity-Middle Europe. J. Atmos. Sol.-Terr. Phys. 63, 1705–1713 (2001). doi:10.1016/S1364-6826(01)00053-0

    Article  ADS  Google Scholar 

  • L.H. Seeley, G.T. Seidler, J.G. Dash, Laboratory investigation of possible ice nucleation by ionizing radiation in pure water at tropospheric temperatures. J. Geophys. Res. 106, 3033–3036 (2001). doi:10.1029/2000JD900670

    Article  ADS  Google Scholar 

  • K. Semeniuk, V.I. Fomichev, J.C. McConnell, C. Fu, S.M.L. Melo, I.G. Usoskin, Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 11, 5045–5077 (2011). doi:10.5194/acp-11-5045-2011

    Article  ADS  Google Scholar 

  • A. Seppälä, M.A. Clilverd, C.J. Rodger, \(\mathrm{NO}_{x}\) enhancements in the middle atmosphere during 2003–2004 polar winter: Relative significance of solar proton events and the aurora as a source. J. Geophys. Res. 112, D23303 (2007). doi:10.1029/2006JD008326

    Article  ADS  Google Scholar 

  • A. Seppälä, K. Matthes, C. E. Rondall, I. A. Mironova What is the solar influence on climate? Overview of activities during CAWSES-II. Prog. Earth Planet. Sci. 1, 24 (2014). doi:10.1186/s40645-014-0024-3

    Article  ADS  Google Scholar 

  • V.A. Sergeev, M.V. Malkov, Diagnostics of the magnetic configuration of the plasma sheet according to measurements of energetic electrons above the ionosphere. Geomagn. Aeron. 28, 649–654 (1988)

    ADS  Google Scholar 

  • V.A. Sergeev, A.G. Iakhnin, R. Pellinen, Mutual location and magnetospheric sources of the penetration of energetic electrons and diffuse and discrete auroras at a preliminary substorm phase. Geomagn. Aeron. 23, 972–978 (1983)

    ADS  Google Scholar 

  • V.A. Sergeev, M. Malkov, K. Mursula, Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail. J. Geophys. Res. 98, 7609–7620 (1993). doi:10.1029/92JA02587

    Article  ADS  Google Scholar 

  • V.A. Sergeev, G.R. Bikkuzina, P.T. Newell, Dayside isotropic precipitation of energetic protons. Ann. Geophys. 15, 1233–1245 (1997). doi:10.1007/s00585-997-1233-5

    Article  ADS  Google Scholar 

  • V.M. Sheftel, O.I. Bandilet, A.N. Yaroshenko, A.K. Chernyshev, Space-time structure and reasons of global, regional, and local variations of atmospheric electricity. J. Geophys. Res. 99, D10797 (1994). doi:10.1029/93JD02857

    Article  ADS  Google Scholar 

  • E.P. Shettle, M.T. DeLand, G.E. Thomas, J.J. Olivero, Long term variations in the frequency of polar mesospheric clouds in the Northern Hemisphere from SBUV. Geophys. Res. Lett. 36, L2803 (2009). doi:10.1029/2008GL036048

    Article  ADS  Google Scholar 

  • J.A. Simpson, The Latitude Dependence of Neutron Densities in the Atmosphere as a Function of Altitude. Phys. Rev. 73, 1389–1391 (1948). doi:10.1103/PhysRev.73.1389

    Article  ADS  Google Scholar 

  • J.A. Simpson, Elemental and isotopic composition of the Galactic cosmic rays. Annu. Rev. Nucl. Part. Sci. 33, 323–382 (1983). doi:10.1146/annurev.ns.33.120183.001543

    Article  ADS  Google Scholar 

  • J.A. Simpson, A brief history of recurrent solar modulation of the Galactic cosmic rays (1937–1990). Space Sci. Rev. 83, 169–176 (1998)

    Article  ADS  Google Scholar 

  • J.A. Simpson, W. Fonger, S.B. Treiman, Cosmic radiation intensity-time variations and their origin. I. Neutron intensity variation method and meteorological factors. Phys. Rev. 90, 934–950 (1953). doi:10.1103/PhysRev.90.934

    Article  ADS  Google Scholar 

  • B.-M. Sinnhuber, P. von der Gathen, M. Sinnhuber, M. Rex, G. König-Langlo, S.J. Oltmans, Large decadal scale changes of polar ozone suggest solar influence. Atmos. Chem. Phys. 6(7), 1835–1841 (2006). doi:10.5194/acp-6-1835-2006.

    Article  ADS  Google Scholar 

  • M. Sinnhuber, H. Nieder, N. Wieters, Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv. Geophys. 33, 1281–1334 (2012). doi:10.1007/s10712-012-9201-3

    Article  ADS  Google Scholar 

  • M. Sinnhuber, B. Funke, T. von Clarmann, M. Lopez-Puertas, G.P. Stiller, A. Seppälä, Variability of \(\mathrm{NO}_{x}\) in the polar middle atmosphere from October 2003 to March 2004: vertical transport vs. local production by energetic particles. Atmos. Chem. Phys. 14, 7681–7692 (2014). doi:10.5194/acp-14-7681-2014

    Article  ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, E.O. Flückiger, Magnetospheric models and trajectory computations. Space Sci. Rev. 93, 305–333 (2000). doi:10.1023/A:1026556831199

    Article  ADS  Google Scholar 

  • D.F. Smart, M.A. Shea, A.J. Tylka, P.R. Boberg, A geomagnetic cutoff rigidity interpolation tool: Accuracy verification and application to space weather. Adv. Space Res. 37, 1206–1217 (2006). doi:10.1016/j.asr.2006.02.011

    Article  ADS  Google Scholar 

  • D.M. Smith, R.P. Lin, K.A. Anderson, K. Hurley, C.M. Johns, High-resolution spectra of 20–300 keV hard X-rays from electron precipitation over Antarctica. J. Geophys. Res. 100, 19675–19686 (1995). doi:10.1029/95JA01472

    Article  ADS  Google Scholar 

  • A.K. Smith, R.R. Garcia, D.R. Marsh, J.H. Richter, WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res. 116, D20115 (2011). doi:10.1029/2011JD016083

    Article  ADS  Google Scholar 

  • S. Solomon, P.J. Crutzen, Analysis of the August 1972 solar proton event including chlorine chemistry. J. Geophys. Res. 86, 1140–1146 (1981). doi:10.1029/JC086iC02p01140

    Article  ADS  Google Scholar 

  • S. Solomon, D.W. Rusch, J.-C. Gerard, G.C. Reid, P.J. Crutzen, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. II—odd hydrogen. Planet. Space Sci. 29, 885–893 (1981). doi:10.1016/0032-0633(81)90078-7

    Article  ADS  Google Scholar 

  • S. Solomon, R.G. Roble, P.J. Crutzen, Photochemical coupling between the thermosphere and the lower atmosphere. I—Odd nitrogen from 50 to 120 km. J. Geophys. Res. 87, 7206–7220 (1982). doi:10.1029/JC087iC09p07206

    Article  ADS  Google Scholar 

  • T. Stanev, High Energy Cosmic Rays (2010). doi:10.1007/978-3-540-85148-6

    Book  Google Scholar 

  • Y.I. Stozhkov, N.S. Svirzhevsky, G.A. Bazilevskaya, A.N. Kvashnin, V.S. Makhmutov, A.K. Svirzhevskaya, Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 44, 1124–1137 (2009). doi:10.1016/j.asr.2008.10.038

    Article  ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, Modeling ground and space based cosmic ray observations. Adv. Space Res. 49, 392–407 (2012). doi:10.1016/j.asr.2011.10.006

    Article  ADS  Google Scholar 

  • H. Svensmark, T. Bondo, J. Svensmark, Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett. 361, L15101 (2009). doi:10.1029/2009GL038429

    ADS  Google Scholar 

  • R.M. Thorne, T.P. O’Brien, Y.Y. Shprits, D. Summers, R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms. J. Geophys. Res. 110, A9202 (2005). doi:10.1029/2004JA010882

    Article  ADS  Google Scholar 

  • R.M. Thorne, B. Ni, X. Tao, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467, 943–946 (2010). doi:10.1038/nature09467

    Article  ADS  Google Scholar 

  • B.A. Tinsley, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 94, 231–258 (2000)

    Article  ADS  Google Scholar 

  • B.A. Tinsley, R.P. Rohrbaugh, M. Hei, K.V. Beard, Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. J. Atmos. Sci. 57, 2118–2134 (2000)

    Article  ADS  Google Scholar 

  • O.W. Torreson, W.C. Parkinson, O.H. Gish, G.R. Wait, Ocean atmospheric-electric results, in Oceanography III: Scientific Results of Cruise VII During 1928–1929 under Command of Captain J.P. Ault (Carnegie Institution of Washington, Researches of the Department of Terrestrial Magnetism, Washington 1946)

    Google Scholar 

  • S.N. Tripathi, S. Vishnoi, S. Kumar, R.G. Harrison, Computationally-efficient expressions for the collision efficiency between electrically charged aerosol particles and cloud droplets. ArXiv Physics e-prints (2006)

  • I. Tzur, R.G. Roble, C.C. Reid, H.C. Zhuang, The response of the Earth’s global electrical circuit to a solar proton event, in Weather and Climate Responses to Solar Variations, ed. by B.M. McCormac, 1983, pp. 427–435

    Google Scholar 

  • I.G. Usoskin, Cosmic rays and climate forcing. Mem. Soc. Astron. Ital. 82, 937–942 (2011)

    ADS  Google Scholar 

  • I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi:10.12942/lrsp-2013-1

    ADS  Google Scholar 

  • I.G. Usoskin, G.A. Kovaltsov, Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. 111, D21206 (2006). doi:10.1029/2006JD007150

    Article  ADS  Google Scholar 

  • I.G. Usoskin, H. Kananen, K. Mursula, P. Tanskanen, G.A. Kovaltsov, Correlative study of solar activity and cosmic ray intensity. J. Geophys. Res. 103, 9567–9574 (1998). doi:10.1029/97JA03782

    Article  ADS  Google Scholar 

  • I.G. Usoskin, O.G. Gladysheva, G.A. Kovaltsov, Cosmic ray-induced ionization in the atmosphere: Spatial and temporal changes. J. Atmos. Sol.-Terr. Phys. 66, 1791–1796 (2004). doi:10.1016/j.jastp.2004.07.037

    Article  ADS  Google Scholar 

  • I.G. Usoskin, K. Alanko-Huotari, G.A. Kovaltsov, K. Mursula, Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004. J. Geophys. Res. 110, A12108 (2005). doi:10.1029/2005JA011250

    Article  ADS  Google Scholar 

  • I.G. Usoskin, I. Braun, O.G. Gladysheva, J.R. Hörandel, T. Jämsén, G.A. Kovaltsov, S.A. Starodubtsev, Forbush decreases of cosmic rays: Energy dependence of the recovery phase. J. Geophys. Res. 113, A07102 (2008). doi:10.1029/2007JA012955

    ADS  Google Scholar 

  • I.G. Usoskin, L. Desorgher, P. Velinov, M. Storini, E.O. Flückiger, R. Bütikofer, G.A. Kovaltsov, Ionization of the Earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys. 57, 88–101 (2009). doi:10.2478/s11600-008-0019-9

    Article  ADS  Google Scholar 

  • I.G. Usoskin, G.A. Kovaltsov, I.A. Mironova, Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere. J. Geophys. Res. 115, D10302 (2010). doi:10.1029/2009JD013142

    Article  ADS  Google Scholar 

  • I.G. Usoskin, G.A. Bazilevskaya, G.A. Kovaltsov, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. 116, A02104 (2011). doi:10.1029/2010JA016105

    Article  ADS  Google Scholar 

  • I.G. Usoskin, G.A. Kovaltsov, I.A. Mironova, A.J. Tylka, W.F. Dietrich, Ionization effect of solar particle GLE events in low and middle atmosphere. Atmos. Chem. Phys. 11, 1979–1988 (2011). doi:10.5194/acp-11-1979-2011

    Article  ADS  Google Scholar 

  • R. Vainio, L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, R.B. Horne, G.A. Kovaltsov, K. Kudela, M. Laurenza, S. McKenna-Lawlor, H. Rothkaehl, I.G. Usoskin, Dynamics of the Earth’s particle radiation environment. Space Sci. Rev. 147, 187–231 (2009). doi:10.1007/s11214-009-9496-7

    Article  ADS  Google Scholar 

  • P.I. Velinov, L.N. Mateev, Response of the middle atmosphere to Galactic cosmic rays. Geomagn. Aeron. 30, 593–598 (1990)

    ADS  Google Scholar 

  • P.I.Y. Velinov, S. Asenovski, K. Kudela, J. Lastovicka, L. Mateev, A. Mishev, P. Tonev, Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere. J. Space Weather Space Clim. 3(26), A14 (2013). doi:10.1051/swsc/2013036

    Article  ADS  Google Scholar 

  • P.T. Verronen, R. Lehmann, Analysis and of ionic reactions affecting middle atmospheric \(\mathrm{HO}_{x}\) and \(\mathrm{NO}_{x}\) during proton events. Ann. Geophys. 31, 909–956 (2013). doi:10.5194/angeo-31-909-2013

    Article  ADS  Google Scholar 

  • P.T. Verronen, E. Turunen, T. Ulich, E. Kyrölä, Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model. Ann. Geophys. 20, 1967–1976 (2002). doi:10.5194/angeo-20-1967-2002

    Article  ADS  Google Scholar 

  • P.T. Verronen, B. Funke, M. López-Puertas, G.P. Stiller, T. von Clarmann, N. Glatthor, C. Enell, E. Turunen, J. Tamminen, About the increase of \(HNO_{3}\) in the stratopause region during the Halloween 2003 solar proton event. Geophys. Res. Lett. 35, L20809 (2008). doi:10.1029/2008GL035312

    Article  ADS  Google Scholar 

  • P.T. Verronen, C.J. Rodger, M.A. Clilverd, S. Wang, First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts. J. Geophys. Res. 116, D7307 (2011a). doi:10.1029/2010JD014965

    Article  ADS  Google Scholar 

  • P.T. Verronen, M.L. Santee, G.L. Manney, R. Lehmann, S.-M. Salmi, A. Seppälä, Nitric acid enhancements in the mesosphere during the January 2005 and December 2006 solar proton events. J. Geophys. Res. 116, D17301 (2011b). doi:10.1029/2011JD016075

    Article  ADS  Google Scholar 

  • F.M. Vitt, C.H. Jackman, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model. J. Geophys. Res. 101, 6729–6740 (1996). doi:10.1029/95JD03386

    Article  ADS  Google Scholar 

  • T. von Clarmann, N. Glatthor, M. Höpfner, S. Kellmann, R. Ruhnke, G.P. Stiller, H. Fischer, B. Funke, S. Gil-López, M. López-Puertas, Experimental evidence of perturbed odd hydrogen and chlorine chemistry after the October 2003 solar proton events. J. Geophys. Res. 110, A09S45 (2005). doi:10.1029/2005JA011053

    Google Scholar 

  • C. von Savigny, M. Sinnhuber, H. Bovensmann, J.P. Burrows, M.-B. Kallenrode, M. Schwartz, On the disappearance of noctilucent clouds during the January 2005 solar proton events. Geophys. Res. Lett. 34, L2805 (2007). doi:10.1029/2006GL028106

    Article  ADS  Google Scholar 

  • H.D. Voss, W.L. Imhof, M. Walt, J. Mobilia, E.E. Gaines, J.B. Reagan, U.S. Inan, R.A. Helliwell, D.L. Carpenter, J.P. Katsufrakis, Lightning-induced electron precipitation. Nature 312, 740–742 (1984). doi:10.1038/312740a0

    Article  ADS  Google Scholar 

  • H.D. Voss, M. Walt, W.L. Imhof, J. Mobilia, U.S. Inan, Satellite observations of lightning-induced electron precipitation. J. Geophys. Res. 103, 11725–11744 (1998). doi:10.1029/97JA02878

    Article  ADS  Google Scholar 

  • P.K. Wang, S.N. Grover, H.R. Pruppacher, On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J. Atmos. Sci. 35, 1735–1743 (1978)

    Article  ADS  Google Scholar 

  • Y. Wang, D.J. Jacob, J.A. Logan, Global simulation of tropospheric \(\mathrm{O}_{3}\)-\(\mathrm{NO}_{x}\)-hydrocarbon chemistry 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. J. Geophys. Res. 103, 10757–10768 (1998). doi:10.1029/98JD00156

    Article  ADS  Google Scholar 

  • C.T.R. Wilson, Investigation on lightning discharges and on the electric field of thunderstorms. Philos. Trans. R. Soc. Lond. A221, 73–115 (1920)

    ADS  Google Scholar 

  • J.R. Winckler, Cosmic-ray increase at high altitude on February 23, 1956. Phys. Rev. 104, 220 (1956). doi:10.1103/PhysRev.104.220

    Article  ADS  Google Scholar 

  • S. Wing, P.T. Newell, Central plasma sheet ion properties as inferred from ionospheric observations. J. Geophys. Res. 103, 6785–6800 (1998). doi:10.1029/97JA02994

    Article  ADS  Google Scholar 

  • H. Winkler, S. Kazeminejad, M. Sinnhuber, M.-B. Kallenrode, J. Notholt, Conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar region. J. Geophys. Res. 114, D00I03 (2009). doi:10.1029/2008JD011587

    Article  Google Scholar 

  • H. Winkler, C. von Savigny, J.P. Burrows, J.M. Wissing, M.J. Schwartz, A. Lambert, M. García-Comas, Impacts of the January 2005 solar particle event on noctilucent clouds and water at the polar summer mesopause. Atmos. Chem. Phys. 12, 5633–5646 (2012). doi:10.5194/acp-12-5633-2012

    Article  ADS  Google Scholar 

  • J.M. Wissing, M.-B. Kallenrode, Atmospheric Ionization Module Osnabrück (AIMOS): A 3-D model to determine atmospheric ionization by energetic charged particles from different populations. J. Geophys. Res. 114, A06104 (2009). doi:10.1029/2008JA013884

    Article  ADS  Google Scholar 

  • G. Witt, The nature of noctilucent clouds, in Space Res. IX, 1969, pp. 157–169

    Google Scholar 

  • WMO, Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report 52, WMO, Geneva, Switzerland, 442 (2011)

  • F. Yu, Formation of large NAT particles and denitrification in polar stratosphere: possible role of cosmic rays and effect of solar activity. Atmos. Chem. Phys. 4, 2273–2283 (2004)

    Article  ADS  Google Scholar 

  • A.M. Zadorozhnyi, G.A. Tuchkov, V.N. Kikhtenko, J. Lastovicka, J. Boska, A. Novak, Nitric oxide and lower ionosphere quantities during solar particle events of October 1989 after rocket and ground-based measurements. J. Atmos. Sol.-Terr. Phys. 54, 183–192 (1992)

    Article  ADS  Google Scholar 

  • Y. Zhang, L.J. Paxton, An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Sol.-Terr. Phys. 70, 1231–1242 (2008). doi:10.1016/j.jastp.2008.03.008

    Article  ADS  Google Scholar 

  • H. Ziereis, F. Arnold, Gaseous ammonia and ammonium ions in the free troposphere. Nature 321, 503–505 (1986). doi:10.1038/321503a0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The development of this article resulted from work carried out by an international team of the International Space Science Institute (ISSI), Bern, Switzerland, on “Study of Cosmic Ray Influence upon Atmospheric Processes” continued with an international team of ISSI on “Specification of Ionization Sources Affecting Atmospheric Processes”. Collaboration in the frame of COST Action ES1005 TOSCA is gratefully acknowledge. KAN acknowledges the support of an Early Career Fellowship from the Leverhulme Trust. IU acknowledges ReSoLVE Centre of Excellence (Academy of Finland Project No. 272157). ER was partially supported by the Swiss National Science Foundation under grant agreements CRSI122-130642 (FUPSOL) and CRSII2-147659 (FUPSOL II). IM acknowledges the support of RFBR grant 13-05-01063. KA, GH and KAN are grateful to Dr. F. Marcz (the Hungarian Institute of Sciences) who provided the PG data for Fig. 42. The solar flux data used in Fig. 45 were provided by NOAA’s National Geophysical Data Center.

The authors thank the Editor for assistance and are grateful to anonymous Reviewers for their efforts and valuable comments that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Mironova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, I.A., Aplin, K.L., Arnold, F. et al. Energetic Particle Influence on the Earth’s Atmosphere. Space Sci Rev 194, 1–96 (2015). https://doi.org/10.1007/s11214-015-0185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0185-4

Keywords

Navigation