Space Science Reviews

, Volume 194, Issue 1–4, pp 1–96 | Cite as

Energetic Particle Influence on the Earth’s Atmosphere

  • Irina A. Mironova
  • Karen L. Aplin
  • Frank Arnold
  • Galina A. Bazilevskaya
  • R. Giles Harrison
  • Alexei A. Krivolutsky
  • Keri A. Nicoll
  • Eugene V. Rozanov
  • Esa Turunen
  • Ilya G. Usoskin
Article

Abstract

This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

Keywords

Energetic Particle Precipitation (EPP) Galactic Cosmic Rays (GCRs) Solar Energetic Particles (SEPs) Energetic Electron Precipitation (EEP) Ions The Earth Atmosphere: Lower Thermosphere, Mesosphere, Stratosphere, Troposphere Atmospheric Processes Atmospheric Chemistry Global Electric Circuit Aerosols and Clouds Climate 
ACR

anomalous cosmic ray

CR

cosmic ray

CRAC

cosmic ray atmospheric cascade

CME

coronal mass ejection

CRII

cosmic rays induced ionization

CIR

corotating interaction region

CCN

cloud condensation nuclei

CCM

chemistry climate model

CGL

corrected geomagnetic latitude

EAS

extensive air showers

EPP

energetic particle precipitation

EPPs

energetic precipitating particles

EP

energetic particle

EEP

energetic electron precipitation

EMIC

electromagnetic ion cyclotron

EUV

extreme ultraviolet

GCR

galactic cosmic ray

GLE

ground level enhancement

GMIR

global merged interaction region

GEC

global electrical circuit

HCS

heliospheric current sheet

IMF

interplanetary magnetic field

NM

neutron monitor

NLC

noctilucent clouds

PSC

Polar stratospheric clouds

REP

relativistic electron precipitation

SA

solar activity

SCR

solar cosmic ray

SEP

solar energetic particle

SPE

solar proton event

(SEPs event ≡ SPE ≡ SCRs)

References

  1. J.A. Abreu, J. Beer, F. Steinhilber, S.M. Tobias, N.O. Weiss, For how long will the current grand maximum of solar activity persist? Geophys. Res. Lett. 352, L20109 (2008). doi:10.1029/2008GL035442 CrossRefGoogle Scholar
  2. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, M.P. De Pascale, C. De Santis, N. De Simone, V. Di Felice, V. Formato, A.M. Galper, L. Grishantseva, A.V. Karelin, S.V. Koldashov, S. Koldobskiy, S.Y. Krutkov, A.N. Kvashnin, A. Leonov, V. Malakhov, L. Marcelli, A.G. Mayorov, W. Menn, V.V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S.B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y.I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S.A. Voronov, Y.T. Yurkin, J. Wu, G. Zampa, N. Zampa, V.G. Zverev, M.S. Potgieter, E.E. Vos, Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. Astrophys. J. 765, 91 (2013). doi:10.1088/0004-637X/765/2/91 ADSCrossRefGoogle Scholar
  3. M. Aguilar, G. Alberti, B. Alpat, A. Alvino, G. Ambrosi, K. Andeen, H. Anderhub, L. Arruda, P. Azzarello, A. Bachlechner, et al. First result from the Alpha Magnetic Spectrometer on the International Space Station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110(14), 141102 (2013). doi:10.1103/PhysRevLett.110.141102 ADSCrossRefGoogle Scholar
  4. H.S. Ahluwalia, Timelines of cosmic ray intensity, Ap, IMF, and sunspot numbers since 1937. J. Geophys. Res. 116, 12106 (2011). doi:10.1029/2011JA017021 CrossRefGoogle Scholar
  5. H.S. Ahluwalia, R.C. Ygbuhay, Testing baseline stability of some neutron monitors in Europe, Africa, and Asia. Adv. Space Res. 51, 1990–1995 (2013). doi:10.1016/j.asr.2013.01.014 ADSCrossRefGoogle Scholar
  6. A.C. Aikin, Energetic particle-induced enhancements of stratospheric nitric acid. Geophys. Res. Lett. 21, 859–862 (1994). doi:10.1029/94GL00914 ADSCrossRefGoogle Scholar
  7. A.C. Aikin, Production of stratospheric HNO3 by different ion-molecule reaction mechanisms. J. Geophys. Res. 102, 12921–12926 (1997). doi:10.1029/97JD00419 ADSCrossRefGoogle Scholar
  8. S.-I. Akasofu, The auroral oval, the auroral substorm, and their relations with the internal structure of the magnetosphere. Planet. Space Sci. 14, 587–595 (1966). doi:10.1016/0032-0633(66)90043-2 ADSCrossRefGoogle Scholar
  9. M.V. Alania, R. Modzelewska, A. Wawrzynczak, On the Relationship of the 27-day Variations of the Solar Wind Velocity and Galactic Cosmic Ray Intensity in Minimum Epoch of Solar Activity. Sol. Phys. 270, 629–641 (2011). doi:10.1007/s11207-011-9778-6 ADSCrossRefGoogle Scholar
  10. K. Alanko, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Heliospheric modulation strength: effective neutron monitor energy. Adv. Space Res. 32, 615–620 (2003). doi:10.1016/S0273-1177(03)00348-X ADSCrossRefGoogle Scholar
  11. S.Y. Aleksandrin, A.M. Galper, L.A. Grishantzeva, S.V. Koldashov, L.V. Maslennikov, A.M. Murashov, P. Picozza, V. Sgrigna, S.A. Voronov, High-energy charged particle bursts in the near-Earth space as earthquake precursors. Ann. Geophys. 21, 597–602 (2003). doi:10.5194/angeo-21-597-2003 ADSCrossRefGoogle Scholar
  12. H.R. Anderson, Cosmic ray total ionization, 1970–1972. J. Geophys. Res. 78, 3958–3960 (1973). doi:10.1029/JA078i019p03958 ADSCrossRefGoogle Scholar
  13. M.E. Andersson, P.T. Verronen, S. Wang, C.J. Rodger, M.A. Clilverd, B.R. Carson, Precipitating radiation belt electrons and enhancements of mesospheric hydroxyl during 2004–2009. J. Geophys. Res. 117, D09304 (2012). doi:10.1029/2011JD017246 ADSGoogle Scholar
  14. M.E. Andersson, P.T. Verronen, C.J. Rodger, M.A. Clilverd, S. Wang, Longitudinal hotspots in the mesospheric OH variations due to energetic electron precipitation. Atmos. Chem. Phys. 14, 1095–1105 (2014a). doi:10.5194/acp-14-1095-2014 ADSCrossRefGoogle Scholar
  15. M.E. Andersson, P.T. Verronen, C.J. Rodger, M.A. Clilverd, A. Seppälä, Missing driver in the Sun-Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat. Commun. 5, 5197 (2014b). doi:10.1038/ncomms6197 ADSCrossRefGoogle Scholar
  16. K.L. Aplin, M. Lockwood, Cosmic ray modulation of infra-red radiation in the atmosphere. Env. Res. Letts. 8, 015026 (2013). 6 pp. doi:10.1088/1748-9326/8/1/015026 CrossRefGoogle Scholar
  17. E. Arijs, G. Brasseur, Acetonitrile in the stratosphere and implications for positive ion composition. J. Geophys. Res. 91, 4003–4016 (1986). doi:10.1029/JD091iD03p04003 ADSCrossRefGoogle Scholar
  18. F. Arnold, Ion-induced nucleation of atmospheric water vapor at the mesopause. Planet. Space Sci. 28, 1003–1009 (1980a). doi:10.1016/0032-0633(80)90061-6 ADSCrossRefGoogle Scholar
  19. F. Arnold, Multi-ion complexes in the stratosphere—implications for trace gases and aerosol. Nature 284, 610 (1980b). doi:10.1038/284610a0 ADSCrossRefGoogle Scholar
  20. F. Arnold, Solvated electrons in the upper atmosphere. Nature 294, 732 (1981). doi:10.1038/294732a0 ADSCrossRefGoogle Scholar
  21. F. Arnold, Ion nucleation—a potential source for stratospheric aerosols. Nature 299, 134–137 (1982). doi:10.1038/299134a0 ADSCrossRefGoogle Scholar
  22. F. Arnold, Atmospheric ions and aerosol formation. Space Sci. Rev. 137, 225–239 (2008). doi:10.1007/s11214-008-9390-8 ADSCrossRefGoogle Scholar
  23. F. Arnold, T. Buehrke, New \(\mathrm{H}_{2}\mathrm{SO}_{4}\) and \(\mathrm{HSO}_{3}\) vapour measurements in the stratosphere—evidence for a volcanic influence. Nature 301, 293–295 (1983). doi:10.1038/301293a0 ADSCrossRefGoogle Scholar
  24. F. Arnold, D. Krankowsky, Ion composition and electron- and ion-loss processes in the Earth’s atmosphere, in Dynamical and Chemical Coupling between the Neutral and Ionized Atmosphere, ed. by B. Grandal, A. Holtet, 1977, pp. 93–127 CrossRefGoogle Scholar
  25. F. Arnold, A.A. Viggiano, H. Schlager, Implications for trace gases and aerosols of large negative ion clusters in the stratosphere. Nature 297, 371–376 (1982). doi:10.1038/297371a0 ADSCrossRefGoogle Scholar
  26. F. Arnold, T. Buehrke, S. Qiu, Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichon. Nature 348, 49 (1990). doi:10.1038/348049a0 ADSCrossRefGoogle Scholar
  27. F. Arnold, A. Kiendler, V. Wiedemer, S. Aberle, T. Stilp, R. Busen, Chemiion concentration measurements in jet engine exhaust at the ground: Implications for ion chemistry and aerosol formation in the wake of a jet aircraft. Geophys. Res. Lett. 27, 1723–1726 (2000). doi:10.1029/1999GL011096 ADSCrossRefGoogle Scholar
  28. J. Austin, K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, G. Bodeker, C. Brühl, N. Butchart, M. Chipperfield, M. Deushi, V.I. Fomichev, M.A. Giorgetta, L. Gray, K. Kodera, F. Lott, E. Manzini, D. Marsh, K. Matthes, T. Nagashima, K. Shibata, R.S. Stolarski, H. Struthers, W. Tian, Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res. 113, D11306 (2008). doi:10.1029/2007JD009391 ADSCrossRefGoogle Scholar
  29. D.N. Baker, Effects of the Sun on the Earth’s environment. J. Atmos. Sol.-Terr. Phys. 62, 1669–1681 (2000). doi:10.1016/S1364-6826(00)00119-X ADSCrossRefGoogle Scholar
  30. D.N. Baker, T.I. Pulkkinen, Solar disturbances and correlated geospace responses: Relativistic magnetospheric electron acceleration, in Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, ed. by A. Wilson ESA Special Publication, vol. 415, 1997, p. 199 Google Scholar
  31. D.N. Baker, R.A. Goldberg, F.A. Herrero, J.B. Blake, L.B. Callis, Satellite and rocket studies of relativistic electrons and their influence on the middle atmosphere. J. Atmos. Sol.-Terr. Phys. 55, 1619–1628 (1993). doi:10.1016/0021-9169(93)90167-W ADSCrossRefGoogle Scholar
  32. D.N. Baker, J.B. Blake, L.B. Callis, J.R. Cummings, D. Hovestadt, S. Kanekal, B. Klecker, R.A. Mewaldt, Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX. Geophys. Res. Lett. 21, 409–412 (1994). doi:10.1029/93GL03532 ADSCrossRefGoogle Scholar
  33. D.N. Baker, G.M. Mason, J.E. Mazur, A small spacecraft mission with large accomplishments. Eos 93, 325–326 (2012). doi:10.1029/2012EO340001 ADSCrossRefGoogle Scholar
  34. D.N. Baker, A.N. Jaynes, X. Li, M.G. Henderson, S.G. Kanekal, G.D. Reeves, H.E. Spence, S.G. Claudepierre, J.F. Fennell, M.K. Hudson, R.M. Thorne, J.C. Foster, P.J. Erickson, D.M. Malaspina, J.R. Wygant, A. Boyd, C.A. Kletzing, A. Drozdov, Y.Y. Shprits, Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations. Geophys. Res. Lett. 41, 1351–1358 (2014). doi:10.1002/2013GL058942 ADSCrossRefGoogle Scholar
  35. L. Barnard, M. Lockwood, M.A. Hapgood, M.J. Owens, C.J. Davis, F. Steinhilber, Predicting space climate change. Geophys. Res. Lett. 381, L16103 (2011). doi:10.1029/2011GL048489 ADSGoogle Scholar
  36. C. Barth, K. Mankoff, S. Bailey, S. Solomon, Global observations of nitric oxide in the thermosphere. J. Geophys. Res. 108(A1), 1027 (2003). doi:10.1029/2002JA009458 CrossRefGoogle Scholar
  37. A.J.G. Baumgaertner, P. Jöckel, C. Brühl, Energetic particle precipitation in ECHAM5/MESSy1—Part 1: Downward transport of upper atmospheric \(\mathrm{NO}_{x}\) produced by low energy electrons. Atmos. Chem. Phys. 9, 2729–2740 (2009) ADSCrossRefGoogle Scholar
  38. A.J.G. Baumgaertner, A. Seppälä, P. Jöckel, M.A. Clilverd, Geomagnetic activity related \(\mathrm{NO}_{x}\) enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmos. Chem. Phys. 11, 4521–4531 (2011). doi:10.5194/acp-11-4521-2011 ADSCrossRefGoogle Scholar
  39. G.A. Bazilevskaya, Solar cosmic rays in the near Earth space and the atmosphere. Adv. Space Res. 35, 458–464 (2005). doi:10.1016/j.asr.2004.11.019 ADSCrossRefGoogle Scholar
  40. G.A. Bazilevskaya, A.I. Sladkova, On certain features of the energy spectrum of Solar events with relativistic protons. Izv. Akad. Nauk SSSR, Ser. Fiz. 67, 1431–1434 (2003) Google Scholar
  41. G.A. Bazilevskaya, A.K. Svirzhevskaya, On the stratospheric measurements of cosmic rays. Space Sci. Rev. 85, 431–521 (1998) ADSCrossRefGoogle Scholar
  42. G. Bazilevskaya, A. Svirzhevskaya, Solar cosmic rays in the Earth’s atmosphere as measured in the long-term LPI Balloon Experiment, in EGS General Assembly Conference Abstracts. EGS General Assembly Conference Abstracts, vol. 27, 2002, p. 2827 Google Scholar
  43. G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, Effects of cosmic rays on the Earth’s environment. J. Atmos. Sol.-Terr. Phys. 62, 1577–1586 (2000). doi:10.1016/S1364-6826(00)00113-9 ADSCrossRefGoogle Scholar
  44. G.A. Bazilevskaya, I.G. Usoskin, E.O. Flückiger, R.G. Harrison, L. Desorgher, R. Bütikofer, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, G.A. Kovaltsov, Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149–173 (2008). doi:10.1007/s11214-008-9339-y ADSCrossRefGoogle Scholar
  45. G.A. Bazilevskaya, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, Solar proton events recorded in the stratosphere during cosmic ray balloon observations in 1957–2008. Adv. Space Res. 45, 603–613 (2010). doi:10.1016/j.asr.2009.11.009 ADSCrossRefGoogle Scholar
  46. K.V. Beard, H.T. Ochs, C.H. Twohy, Aircraft measurements of high average charges on cloud drops in layer clouds. Geophys. Res. Lett. 31, L14111 (2004). doi:10.1029/2004GL020465 ADSCrossRefGoogle Scholar
  47. A.V. Belov, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena, in Proc IAU Symp., vol. 257 (2009), pp. 439–450. doi:10.1017/S1743921309029676 Google Scholar
  48. J.B. Blake, M.D. Looper, D.N. Baker, R. Nakamura, B. Klecker, D. Hovestadt, New high temporal and spatial resolution measurements by SAMPEX of the precipitation of relativistic electrons. Adv. Space Res. 18, 171–186 (1996) ADSCrossRefGoogle Scholar
  49. C.B. Boyle, P.H. Reiff, M.R. Hairston, Empirical polar cap potentials. J. Geophys. Res. 102, 111–126 (1997). doi:10.1029/96JA01742 ADSCrossRefGoogle Scholar
  50. G.P. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere (2005) Google Scholar
  51. D.H. Brautigam, M.S. Gussenhoven, D.A. Hardy, A statistical study on the effects of IMF B(z) and solar wind speed on auroral ion and electron precipitation. J. Geophys. Res. 96, 5525–5538 (1991). doi:10.1029/91JA00157 ADSCrossRefGoogle Scholar
  52. R. Bučík, K. Kudela, S.N. Kuznetsov, Satellite observations of lightning-induced hard X-ray flux enhancements in the conjugate region. Ann. Geophys. 24, 1969–1976 (2006). doi:10.5194/angeo-24-1969-2006 ADSCrossRefGoogle Scholar
  53. M. Calisto, I. Usoskin, E. Rozanov, T. Peter, Influence of Galactic Cosmic Rays on atmospheric composition and dynamics. Atmos. Chem. Phys. 11, 4547–4556 (2011). doi:10.5194/acp-11-4547-2011 ADSCrossRefGoogle Scholar
  54. M. Calisto, P.T. Verronen, E. Rozanov, T. Peter, Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. Atmos. Chem. Phys. 12, 8679–8686 (2012). doi:10.5194/acp-12-8679-2012. ADSCrossRefGoogle Scholar
  55. L.B. Callis, R.E. Boughner, D.N. Baker, J.B. Blake, J.D. Lambeth, Precipitating relativistic electrons—their long-term effect on stratospheric odd nitrogen levels. J. Geophys. Res. 96, 2939–2976 (1991). doi:10.1029/90JD02184 ADSCrossRefGoogle Scholar
  56. L.B. Callis, R.E. Boughner, D.N. Baker, R.A. Mewaldt, J. Bernard Blake, R.S. Selesnick, J.R. Cummings, M. Natarajan, G.M. Mason, J.E. Mazur, Precipitating electrons: Evidence for effects on mesospheric odd nitrogen. Geophys. Res. Lett. 23, 1901–1904 (1996). doi:10.1029/96GL01787 ADSCrossRefGoogle Scholar
  57. L.B. Callis, M. Natarajan, J.D. Lambeth, D.N. Baker, Solar atmospheric coupling by electrons (SOLACE) 2. Calculated stratospheric effects of precipitating electrons, 1979–1988. J. Geophys. Res. 103, 28421–28438 (1998). doi:10.1029/98JD02407 ADSCrossRefGoogle Scholar
  58. L.B. Callis, M. Natarajan, J.D. Lambeth, Observed and calculated mesospheric NO, 1992–1997. Geophys. Res. Lett. 29 (2), D1030 (2002). doi:10.1029/2001GL013995 ADSCrossRefGoogle Scholar
  59. J. Calogovic, C. Albert, F. Arnold, J. Beer, L. Desorgher, E.O. Flueckiger, Sudden cosmic ray decreases: No change of global cloud cover. Geophys. Res. Lett. 370, 03802 (2010). doi:10.1029/2009GL041327 ADSGoogle Scholar
  60. H.V. Cane, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55–77 (2000). doi:10.1023/A:1026532125747 ADSCrossRefGoogle Scholar
  61. K.S. Carslaw, R.G. Harrison, J. Kirkby, Cosmic rays, clouds, and climate. Science 298, 1732–1737 (2002). doi:10.1126/science.1076964 ADSCrossRefGoogle Scholar
  62. A.N. Charakhchyan, Reviews of topical problems: Investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun. Sov. Phys. Usp. 7, 358–374 (1964) ADSCrossRefGoogle Scholar
  63. S.P. Christon, D.J. Williams, D.G. Mitchell, C.Y. Huang, L.A. Frank, Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions. J. Geophys. Res. 96, 1–22 (1991). doi:10.1029/90JA01633 ADSCrossRefGoogle Scholar
  64. T.G. Chronis, Investigating possible links between incoming cosmic ray fluxes and lightning activity over the United States. J. Climate 22, 5748 (2009). doi:10.1175/2009JCLI2912.1 ADSCrossRefGoogle Scholar
  65. V.P. Chuprova, S.K. Gerasimova, V.G. Grigoryev, P.A. Krivoshapkin, G.F. Krymsky, V.P. Mamrukova, V.M. Migunov, A.N. Prikhodko, G.V. Shafer, G.V. Skripin, Y.Y. Sorokin, S.A. Starodubtsev, V.E. Timofeev, The brief history of experimental research of cosmic ray variations in Yakutia. Adv. Space Res. 44, 1200–1206 (2009). doi:10.1016/j.asr.2008.12.024 ADSCrossRefGoogle Scholar
  66. M.A. Clilverd, C.J. Rodger, R.M. Millan, J.G. Sample, M. Kokorowski, M.P. McCarthy, T. Ulich, T. Raita, A.J. Kavanagh, E. Spanswick, Energetic particle precipitation into the middle atmosphere triggered by a coronal mass ejection. J. Geophys. Res. 112, A12206 (2007). doi:10.1029/2007JA012395 ADSCrossRefGoogle Scholar
  67. M.A. Clilverd, C.J. Rodger, T. Moffat-Griffin, E. Spanswick, P. Breen, F.W. Menk, R.S. Grew, K. Hayashi, I.R. Mann, Energetic outer radiation belt electron precipitation during recurrent solar activity. J. Geophys. Res. 115, A8323 (2010a). doi:10.1029/2009JA015204 ADSCrossRefGoogle Scholar
  68. M.A. Clilverd, C.J. Rodger, R.J. Gamble, T. Ulich, T. Raita, A. Seppälä, J.C. Green, N.R. Thomson, J.-A. Sauvaud, M. Parrot, Ground-based estimates of outer radiation belt energetic electron precipitation fluxes into the atmosphere. J. Geophys. Res. 115, A12304 (2010b). doi:10.1029/2010JA015638 ADSCrossRefGoogle Scholar
  69. W.E. Cobb, Evidence of a solar influence on the atmospheric electric elements at Mauna Loa Observatory. Mon. Weather Rev. 95, 905 (1967) ADSCrossRefGoogle Scholar
  70. W.E. Cobb, Balloon measurements of the air-earth current density at the South Pole before and after a solar flare, in Conference on Cloud Physics and Atmospheric Electricity, 1978, pp. 552–554 Google Scholar
  71. D.J. Cooke, J.E. Humble, M.A. Shea, D.F. Smart, N. Lund, I.L. Rasmussen, B. Byrnak, P. Goret, N. Petrou, On cosmic-ray cut-off terminology. Nuovo Cimento C 14, 213–234 (1991) ADSCrossRefGoogle Scholar
  72. P.J. Crutzen, Photochemical reactions initiated by and influencing ozone in the troposphere. Tellus 26, 47 (1974) ADSCrossRefGoogle Scholar
  73. P.J. Crutzen, I.S.A. Isaksen, G.C. Reid, Solar proton events—stratospheric sources of nitric oxide. Science 189, 457–459 (1975). doi:10.1126/science.189.4201.457 ADSCrossRefGoogle Scholar
  74. A.C. Cummings, E.C. Stone, Anomalous cosmic rays and solar modulation. Space Sci. Rev. 83, 51–62 (1998) ADSCrossRefGoogle Scholar
  75. J. Curtius, R. Weigel, H.-J. Vössing, H. Wernli, A. Werner, C.-M. Volk, P. Konopka, M. Krebsbach, C. Schiller, A. Roiger, H. Schlager, V. Dreiling, S. Borrmann, Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. Atmos. Chem. Phys. 5, 3053–3069 (2005) ADSCrossRefGoogle Scholar
  76. P. Dalin, N. Pertsev, V. Romejko, Notes on historical aspects on the earliest known observations of noctilucent clouds. Hist. Geo- Space Sci. 3, 87–97 (2012). doi:10.5194/hgss-3-87-2012 ADSCrossRefGoogle Scholar
  77. D.W. Datlowe, W.L. Imhof, Cyclotron resonance precipitation of energetic electrons from the inner magnetosphere. J. Geophys. Res. 95, 6477–6491 (1990). doi:10.1029/JA095iA05p06477 ADSCrossRefGoogle Scholar
  78. M.T. DeLand, E.P. Shettle, G.E. Thomas, J.J. Olivero, Solar backscattered ultraviolet (SBUV) observations of polar mesospheric clouds (PMCs) over two solar cycles. J. Geophys. Res. 108, D8445 (2003). doi:10.1029/2002JD002398 ADSCrossRefGoogle Scholar
  79. L. Desorgher, E.O. Flückiger, M. Gurtner, M.R. Moser, R. Bütikofer, Atmocosmics: A Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A 20, 6802–6804 (2005). doi:10.1142/S0217751X05030132 ADSCrossRefGoogle Scholar
  80. L.I. Dorman, Cosmic Rays in the Earth’s Atmosphere and Underground (Kluwer Academic, Dordrecht, 2004) CrossRefGoogle Scholar
  81. R.H. Eather, The auroral oval—a reevaluation Rev. Geophys. Space Phys. 11, 155–167 (1973). doi:10.1029/RG011i001p00155 ADSCrossRefGoogle Scholar
  82. T. Egorova, E. Rozanov, Y. Ozolin, A. Shapiro, M. Calisto, T. Peter, W. Schmutz, The atmospheric effects of October 2003 solar proton event simulated with the chemistry-climate model SOCOL using complete and parameterized ion chemistry. J. Atmos. Sol.-Terr. Phys. 73, 356–365 (2011). doi:10.1016/j.jastp.2010.01.009 ADSCrossRefGoogle Scholar
  83. S. Eichkorn, S. Wilhelm, H. Aufmhoff, K.H. Wohlfrom, F. Arnold, Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett. 29(14), D1698 (2002). doi:10.1029/2002GL015044 ADSCrossRefGoogle Scholar
  84. F.L. Eisele, Natural and transmission line produced positive ions. J. Geophys. Res. 94, 6309–6318 (1989). doi:10.1029/JD094iD05p06309 ADSCrossRefGoogle Scholar
  85. B.A. Emery, V. Coumans, D.S. Evans, G.A. Germany, M.S. Greer, E. Holeman, K. Kadinsky-Cade, F.J. Rich, W. Xu, Seasonal, Kp, solar wind, and solar flux variations in long-term singlepass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res. 113, A6311 (2008). doi:10.1029/2007JA012866 ADSCrossRefGoogle Scholar
  86. M.B. Enghoff, H. Svensmark, The role of atmospheric ions in aerosol nucleation a review. Atmos. Chem. Phys. 8, 4911–4923 (2008) ADSCrossRefGoogle Scholar
  87. M.B. Enghoff, J.O.P. Pedersen, U.I. Uggerhøj, S.M. Paling, H. Svensmark, Aerosol nucleation induced by a high energy particle beam. Geophys. Res. Lett. 38, L09805 (2011). doi:10.1029/2011GL047036 ADSCrossRefGoogle Scholar
  88. V. Eyring, J.-F. Lamarque, P. Hess, F. Arfeuille, K. Bowman, M. Chipperfield, B. Duncan, A. Fiore, A. Gettelman, M. Giorgetta, C. Granier, M. Hegglin, D. Kinnison, M. Kunze, U. Langematz, B.-P. Luo, M. Randall, K. Matthes, P. Newman, T. Peter, A. Robock, T. Ryerson, A. Saiz-Lopez, R. Salawitch, M. Schultz, T. Shepherd, D. Shindell, J. Staehelin, S. Tegtmeier, L. Thomason, S. Tilmes, J.-P. Vernier, D.W. Waugh, P.J. Young, Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsl. 40, 48–66 (2013) Google Scholar
  89. P. Fabian, J.A. Pyle, R.J. Wells, The August 1972 solar proton event and the atmospheric ozone layer. Nature 277, 458–460 (1979). doi:10.1038/277458a0 ADSCrossRefGoogle Scholar
  90. W.M. Farrell, M.D. Desch, Solar proton events and the fair weather electric field at ground. Geophys. Res. Lett. 29(9), 1323 (2002). doi:10.1029/2001GL013908 ADSCrossRefGoogle Scholar
  91. I.I. Feldshtein, I.I. Galperin, An alternative interpretation of auroral precipitation and luminosity observations from the DE, DMSP, AUREOL, and Viking satellites in terms of their mapping to the nightside magnetosphere. J. Atmos. Terr. Phys. 55, 105–121 (1993) ADSCrossRefGoogle Scholar
  92. Y.I. Feldstein, Auroral oval. J. Geophys. Res. 78, 1210 (1973). doi:10.1029/JA078i007p01210 ADSCrossRefGoogle Scholar
  93. E.E. Ferguson, F. Arnold, Ion chemistry of the stratosphere. Acc. Chem. Res. 14, 327–334 (1981) CrossRefGoogle Scholar
  94. E.E. Ferguson, F.C. Fehsenfeld, D.L. Albritton, Chap. 2—Ion chemistry of the Earth’s atmosphere, in Gas Phase Ion Chemistry, ed. by M.T. Bowers (Academic Press, New York, 1979), pp. 45–82. 978-0-12-120801-1. doi:10.1016/B978-0-12-120801-1.50008-9. http://www.sciencedirect.com/science/article/pii/B9780121208011500089 CrossRefGoogle Scholar
  95. J.E. Foat, R.P. Lin, D.M. Smith, F. Fenrich, R. Millan, I. Roth, K.R. Lorentzen, M.P. McCarthy, G.K. Parks, J.P. Treilhou, First detection of a terrestrial MeV X-ray burst. J. Geophys. Res. 25, 4109–4112 (1998). doi:10.1029/1998GL900134 Google Scholar
  96. B. Fogle, B. Haurwitz, Noctilucent clouds. Space Sci. Rev. 6, 279–340 (1966). doi:10.1007/BF00173768 ADSCrossRefGoogle Scholar
  97. S.E. Forbush, World-wide cosmic-ray variations, 1937–1952. J. Geophys. Res. 59, 525–542 (1954) ADSCrossRefGoogle Scholar
  98. S.E. Forbush, Cosmic-ray intensity variations during Two Solar Cycles. J. Geophys. Res. 63, 651–669 (1958). doi:10.1029/JZ063i004p00651 ADSCrossRefGoogle Scholar
  99. P.M. Forster, V.I. Fomichev, E. Rozanov, C. Cagnazzo, A.I. Jonsson, U. Langematz, B. Fomin, M.J. Iacono, B. Mayer, E. Mlawer, G. Myhre, R.W. Portmann, H. Akiyoshi, V. Falaleeva, N. Gillett, A. Karpechko, J. Li, P. Lemennais, O. Morgenstern, S. Oberländer, M. Sigmond, K. Shibata, Evaluation of radiation scheme performance within chemistry climate models. J. Geophys. Res. 116, D10302 (2011). doi:10.1029/2010JD015361 ADSCrossRefGoogle Scholar
  100. H.U. Frey, Localized aurora beyond the auroral oval. Rev. Geophys. 45, 1003 (2007). doi:10.1029/2005RG000174 ADSCrossRefGoogle Scholar
  101. F. Friederich, M. Sinnhuber, B. Funke, T. von Clarmann, J. Orphal, Local impact of solar variation on \(\mathrm{NO}_{2}\) in the lower mesosphere and upper stratosphere from 2007 to 2012. Atmos. Chem. Phys. 14, 4055–4064 (2014). doi:10.5194/acp-14-4055-2014 ADSCrossRefGoogle Scholar
  102. C. Fröhlich, J. Lean, The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25, 4377–4380 (1998). doi:10.1029/1998GL900157 ADSCrossRefGoogle Scholar
  103. B. Funke, M. López-Puertas, S. Gil-López, T. von Clarmann, G.P. Stiller, H. Fischer, S. Kellmann, Downward transport of upper atmospheric \(\mathrm{NO}_{x}\) into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. J. Geophys. Res. 110, D24308 (2005). doi:10.1029/2005JD006463 ADSCrossRefGoogle Scholar
  104. B. Funke, A. Baumgaertner, M. Calisto, T. Egorova, C.H. Jackman, J. Kieser, A. Krivolutsky, M. López-Puertas, D.R. Marsh, T. Reddmann, E. Rozanov, S.-M. Salmi, M. Sinnhuber, G.P. Stiller, P.T. Verronen, S. Versick, T. von Clarmann, T.Y. Vyushkova, N. Wieters, J.M. Wissing, Composition changes after the Halloween solar proton event: The High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys. 11, 9089–9139 (2011). doi:10.5194/acp-11-9089-2011 ADSCrossRefGoogle Scholar
  105. B. Funke, M. López-Puertas, G.P. Stiller, T. Clarmann, Mesospheric and stratospheric \(\mathrm{NO}_{y}\) produced by energetic particle precipitation during 2002–2012. J. Geophys. Res. 119, 4429–4446 (2014). doi:10.1002/2013JD021404 CrossRefGoogle Scholar
  106. T. Gaisser, Cosmic Rays and Particle Physics (1990) Google Scholar
  107. A.M. Galper, S.V. Koldashov, S.A. Voronov, High energy particle flux variations as earthquake predictors. Adv. Space Res. 15, 131–134 (1995). doi:10.1016/0273-1177(95)00085-S ADSCrossRefGoogle Scholar
  108. G.A. Germany, G.K. Parks, H. Ranganath, R. Elsen, P.G. Richards, W. Swift, J.F. Spann, M. Brittnacher, Analysis of auroral morphology: Substorm precursor and onset on January 10, 1997. J. Geophys. Res. 25, 3043–3046 (1998). doi:10.1029/98GL01220 Google Scholar
  109. S.E. Gibson, G. de Toma, B. Emery, P. Riley, L. Zhao, Y. Elsworth, R.J. Leamon, J. Lei, S. McIntosh, R.A. Mewaldt, B.J. Thompson, D. Webb, The whole heliosphere interval in the context of a long and structured solar minimum: An overview from Sun to Earth. Sol. Phys. 274, 5–27 (2011). doi:10.1007/s11207-011-9921-4 ADSCrossRefGoogle Scholar
  110. A. Gil, K. Iskra, R. Modzelewska, M.V. Alania, On the 27-day variations of the galactic cosmic ray anisotropy and intensity for different periods of solar magnetic cycle. Adv. Space Res. 35, 687–690 (2005). doi:10.1016/j.asr.2005.03.018 ADSCrossRefGoogle Scholar
  111. O.H. Gish, Evaluation and interpretation of the columnar resistance of the atmosphere. Terr. Magn. Atmos. Electr. 49, 159–168 (1944) CrossRefGoogle Scholar
  112. L.J. Gray, J. Beer, M. Geller, J.D. Haigh, M. Lockwood, K. Matthes, U. Cubasch, D. Fleitmann, G. Harrison, L. Hood, J. Luterbacher, G.A. Meehl, D. Shindell, B. van Geel, W. White, Solar influence on climate. Rev. Geophys. 48, 4001 (2010). doi:10.1029/2009RG000282 ADSCrossRefGoogle Scholar
  113. P.K.F. Grieder, Cosmic Rays at Earth (Elsevier, Amsterdam, 2001) Google Scholar
  114. W. Gringel, Examinations of electrical conductivity of air taking into account solar activity and the aerosol particle concentration up to heights of 35 km. PhD Thesis, Tuebingen, Universitaet, Fachbereich Physik, Doktor der Naturwissenschaften Dissertation (1978), 108 p. In German (1978) Google Scholar
  115. A.V. Gurevich, K.P. Zybin, Runaway breakdown and the mysteries of lightning. Phys. Today 58(5), 37–43 (2005). doi:10.1063/1.1995746 ADSCrossRefGoogle Scholar
  116. D.A. Hardy, M.S. Gussenhoven, E. Holeman, A statistical model of auroral electron precipitation. J. Geophys. Res. 90, 4229–4248 (1985). doi:10.1029/JA090iA05p04229 ADSCrossRefGoogle Scholar
  117. D.A. Hardy, M.S. Gussenhoven, R. Raistrick, W.J. McNeil, Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity. J. Geophys. Res. 92, 12275–12294 (1987). doi:10.1029/JA092iA11p12275 ADSCrossRefGoogle Scholar
  118. D.A. Hardy, M.S. Gussenhoven, D. Brautigam, A statistical model of auroral ion precipitation. J. Geophys. Res. 94, 370–392 (1989). doi:10.1029/JA094iA01p00370 ADSCrossRefGoogle Scholar
  119. D.A. Hardy, M.S. Gussenhoven, D. Brautigam, W. McNeil, A statistical model of auroral ion precipitation. II—Functional representation of the average patterns. J. Geophys. Res. 96, 5539–5547 (1991). doi:10.1029/90JA02451 ADSCrossRefGoogle Scholar
  120. R.G. Harrison, Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci. Rev. 94, 381–396 (2000) ADSCrossRefGoogle Scholar
  121. R.G. Harrison, The Carnegie curve. Surv. Geophys. 34, 209–232 (2013). doi:10.1007/s10712-012-9210-2 ADSCrossRefGoogle Scholar
  122. R.G. Harrison, M.H.P. Ambaum, Observed atmospheric electricity effect on clouds. Environ. Res. Lett. 4(1), 014003 (2009). doi:10.1088/1748-9326/4/1/014003 ADSCrossRefGoogle Scholar
  123. R.G. Harrison, M.H.P. Ambaum, Observing Forbush decreases in cloud at Shetland. J. Atmos. Sol.-Terr. Phys. 72, 1408–1414 (2010). doi:10.1016/j.jastp.2010.09.025 ADSCrossRefGoogle Scholar
  124. R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 1012 (2003). doi:10.1029/2002RG000114 ADSCrossRefGoogle Scholar
  125. R.G. Harrison, H. Tammet, Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci. Rev. 137, 107–118 (2008). doi:10.1007/s11214-008-9356-x ADSCrossRefGoogle Scholar
  126. R.G. Harrison, I. Usoskin, Solar modulation in surface atmospheric electricity. J. Atmos. Sol.-Terr. Phys. 72, 176–182 (2010). doi:10.1016/j.jastp.2009.11.006 ADSCrossRefGoogle Scholar
  127. C.J. Hatton, The neutron monitor, in Processes in Elementary Particle and Cosmic Ray Physics, ed. by J.G. Wilson, S.A. Wouthuysen (North-Holland, Amsterdam–London, 1971), pp. 3–100 Google Scholar
  128. M.G. Heaps, Parametrization of the cosmic ray ion-pair production rate above 18 km. Planet. Space Sci. 26, 513–517 (1978). doi:10.1016/0032-0633(78)90041-7 ADSCrossRefGoogle Scholar
  129. D.F. Heath, A.J. Krueger, P.J. Crutzen, Solar proton event—influence on stratospheric ozone. Science 197, 886–889 (1977). doi:10.1126/science.197.4306.886 ADSCrossRefGoogle Scholar
  130. G. Henschen, F. Arnold, New positive ion species in the stratosphere. Nature 291, 211–213 (1981). doi:10.1038/291211a0 ADSCrossRefGoogle Scholar
  131. A. Hirsikko, T. Nieminen, S. Gagné, K. Lehtipalo, H.E. Manninen, M. Ehn, U. Hõrrak, V.-M. Kerminen, L. Laakso, P.H. McMurry, A. Mirme, S. Mirme, T. Petäjä, H. Tammet, V. Vakkari, M. Vana, M. Kulmala, Atmospheric ions and nucleation: A review of observations. Atmos. Chem. Phys. 11, 767–798 (2011). doi:10.5194/acp-11-767-2011 ADSCrossRefGoogle Scholar
  132. R.H. Holzworth, F.S. Mozer, Direct evidence of solar flare modification of stratospheric electric fields. J. Geophys. Res. 84, 363–367 (1979). doi:10.1029/JC084iC01p00363 ADSCrossRefGoogle Scholar
  133. R.H. Holzworth, K.W. Norville, P.R. Williamson, Solar flare perturbations in stratospheric current systems. Geophys. Res. Lett. 14, 852–855 (1987). doi:10.1029/GL014i008p00852 ADSCrossRefGoogle Scholar
  134. W.A. Hoppel, R.V Anderson, J.C. Willett, Atmospheric Electricity in the Planetary Boundary Layer (The National Academies Press, Washington, 1986). 9780309036801 Google Scholar
  135. R.B. Horne, R.M. Thorne, Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30, L1527 (2003). doi:10.1029/2003GL016973 ADSCrossRefGoogle Scholar
  136. R.B. Horne, M.M. Lam, J.C. Green, Energetic electron precipitation from the outer radiation belt during geomagnetic storms. Geophys. Res. Lett. 36, L19104 (2009). doi:10.1029/2009GL040236 ADSCrossRefGoogle Scholar
  137. H. Hu, R.H. Holzworth, Observations and parameterization of the stratospheric electrical conductivity. J. Geophys. Res. 101, 29539–29552 (1996). doi:10.1029/96JD01060 ADSCrossRefGoogle Scholar
  138. T. Iijima, T.A. Potemra, Field-aligned currents in the dayside cusp observed by Triad. J. Geophys. Res. 81, 5971–5979 (1976a). doi:10.1029/JA081i034p05971 ADSCrossRefGoogle Scholar
  139. T. Iijima, T.A. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 81, 2165–2174 (1976b). doi:10.1029/JA081i013p02165 ADSCrossRefGoogle Scholar
  140. W.L. Imhof, H.D. Voss, J. Mobilia, D.W. Datlowe, E.E. Gaines, The precipitation of relativistic electrons near the trapping boundary. J. Geophys. Res. 96, 5619–5629 (1991). doi:10.1029/90JA02343 ADSCrossRefGoogle Scholar
  141. IPCC, Climate Change 2007—The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Cambridge University Press, Cambridge, 2007), 996 pp. Google Scholar
  142. IPCC, Climate Change 2013—The Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by T.F. Stocker, D. Qin, G.-K.. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia V. Bex P.M. Midgley (Cambridge University Press, Cambridge, 2013), 1029 pp. Google Scholar
  143. C.H. Jackman, J.E. Frederick, R.S. Stolarski, Production of odd nitrogen in the stratosphere and mesosphere—an intercomparison of source strengths. J. Geophys. Res. 85, 7495–7505 (1980). doi:10.1029/JC085iC12p07495 ADSCrossRefGoogle Scholar
  144. C.H. Jackman, A.R. Douglass, R.B. Rood, R.D. McPeters, P.E. Meade, Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two-dimensional model. J. Geophys. Res. 95, 7417–7428 (1990) ADSCrossRefGoogle Scholar
  145. C.H. Jackman, M.C. Cerniglia, J.E. Nielsen, D.J. Allen, J.M. Zawodny, R.D. McPeters, A.R. Douglass, J.E. Rosenfield, R.B. Rood, Two-dimensional and three-dimensional model simulations, measurements, and interpretation of the influence of the October 1989 solar proton events on the middle atmosphere. J. Geophys. Res. 100, 11641–11660 (1995). doi:10.1029/95JD00369 ADSCrossRefGoogle Scholar
  146. C.H. Jackman, R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, J.M. Russell, Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event. Geophys. Res. Lett. 28, 2883–2886 (2001). doi:10.1029/2001GL013221 ADSCrossRefGoogle Scholar
  147. C.H. Jackman, M.T. Deland, G.J. Labow, E.L. Fleming, D.K. Weisenstein, M.K.W. Ko, M. Sinnhuber, J.M. Russell, Neutral atmospheric influences of the solar proton events in October-November 2003. J. Geophys. Res. 110, A09S27 (2005). doi:10.1029/2004JA010888 CrossRefGoogle Scholar
  148. C.H. Jackman, C.E. Randall, V.L. Harvey, S. Wang, E.L. Fleming, M. López-Puertas, B. Funke, P.F. Bernath, Middle atmospheric changes caused by the January and March 2012 solar proton events. Atmos. Chem. Phys. 14, 1025–1038 (2014). doi:10.5194/acp-14-1025-2014 ADSCrossRefGoogle Scholar
  149. J.F. Janni, Proton range-energy tables, 1 keV–10 GeV, energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. Part I. For 63 compounds. At. Data Nucl. Data Tables 27, 147–339 (1982) ADSCrossRefGoogle Scholar
  150. J.R. Jokipii, J. Kóta, Three-dimensional cosmic-ray simulations: Heliographic latitude and current-sheet tilt. Space Sci. Rev. 72, 379–384 (1995). doi:10.1007/BF00768808 ADSCrossRefGoogle Scholar
  151. F.W. Jones, Comparison of two solutions of a geomagnetic problem. Geophys. J. Int. 39, 623–624 (1974). doi:10.1111/j.1365-246X.1974.tb05478.x ADSCrossRefGoogle Scholar
  152. A.P. Jordan, H.E. Spence, J.B. Blake, D.N.A. Shaul, Revisiting two-step Forbush decreases. J. Geophys. Res. 116, 11103 (2011). doi:10.1029/2011JA016791 CrossRefGoogle Scholar
  153. J. Kazil, E. Kopp, S. Chabrillat, J. Bishop, The University of Bern Atmospheric Ion Model: Time-dependent modeling of the ions in the mesosphere and lower thermosphere. J. Geophys. Res. 108, D4432 (2003). doi:10.1029/2002JD003024 ADSCrossRefGoogle Scholar
  154. J. Kazil, E.R. Lovejoy, M.C. Barth, K. O’Brien, Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos. Chem. Phys. 6, 4905–4924 (2006) ADSCrossRefGoogle Scholar
  155. J. Kazil, R.G. Harrison, E.R. Lovejoy, Tropospheric new particle formation and the role of ions. Space Sci. Rev. 137, 241–255 (2008). doi:10.1007/s11214-008-9388-2 ADSCrossRefGoogle Scholar
  156. J. Kazil, K. Zhang, P. Stier, J. Feichter, U. Lohmann, K. O’Brien, The present-day decadal solar cycle modulation of Earth’s radiative forcing via charged \(\mathrm{H}_{2}\mathrm{SO}_{4}\)/\(\mathrm{H}_{2}\mathrm{O}\) aerosol nucleation. Geophys. Res. Lett. 39, L2805 (2012). doi:10.1029/2011GL050058 ADSCrossRefGoogle Scholar
  157. J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagne, L. Ickes, A. Kurten, A. Kupc, A. Metzger, F. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, A. Downard, M. Ehn, R.C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E.R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkila, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petaja, R. Schnitzhofer, J.H. Seinfeld, M. Sipila, Y. Stozhkov, F. Stratmann, A. Tome, J. Vanhanen, Y. Viisanen, A. Vrtala, P.E. Wagner, H. Walther, E. Weingartner, H. Wex, P.M. Winkler, K.S. Carslaw, D.R. Worsnop, U. Baltensperger, M. Kulmala, Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476(7361), 429–433 (2011). doi:10.1038/nature10343. ADSCrossRefGoogle Scholar
  158. S. Kirkwood, P. Dalin, A. Réchou, Noctilucent clouds observed from the UK and Denmark—trends and variations over 43 years. Ann. Geophys. 26, 1243–1254 (2008). doi:10.5194/angeo-26-1243-2008 ADSCrossRefGoogle Scholar
  159. N.G. Kleimenova, O.V. Kozyreva, S. Michnowski, M. Kubicki, Effect of magnetic storms in variations in the atmospheric electric field at midlatitudes. Geomagn. Aeron. 48, 622–630 (2008). doi:10.1134/S0016793208050071 ADSCrossRefGoogle Scholar
  160. C.A. Kletzing, J.D. Scudder, E.E. Dors, C. Curto, Auroral source region: Plasma properties of the high-latitude plasma sheet. J. Geophys. Res. 108, A1360 (2003). doi:10.1029/2002JA009678 ADSCrossRefGoogle Scholar
  161. N.N. Klimin, V.Y. Rivkind, V.A. Pachin, Collision efficiency calculation model as a software tool for microphysics of electrified clouds. Meteorol. Atmos. Phys. 53, 111–120 (1994). doi:10.1007/BF01031908 ADSCrossRefGoogle Scholar
  162. M. Kokorowski, J.G. Sample, R.H. Holzworth, E.A. Bering, S.D. Bale, J.B. Blake, A.B. Collier, A.R.W. Hughes, E. Lay, R.P. Lin, M.P. McCarthy, R.M. Millan, H. Moraal, T.P. O’Brien, G.K. Parks, M. Pulupa, B.D. Reddell, D.M. Smith, P.H. Stoker, L. Woodger, Rapid fluctuations of stratospheric electric field following a solar energetic particle event. Geophys. Res. Lett. 33, L20105 (2006). doi:10.1029/2006GL027718 ADSCrossRefGoogle Scholar
  163. J.E. Kristjánsson, C.W. Stjern, F. Stordal, A.M. Fjæraa, G. Myhre, K. Jónasson, Cosmic rays, cloud condensation nuclei and clouds—a reassessment using MODIS data. Atmos. Chem. Phys. 8, 7373–7387 (2008) ADSCrossRefGoogle Scholar
  164. A.A. Krivolutsky, Cosmic ray influence on chemical composition of the atmosphere of the Earth. Adv. Space Res. 27, 1993–2002 (2001). doi:10.1016/S0273-1177(01)00296-4 ADSCrossRefGoogle Scholar
  165. A.A. Krivolutsky, A.I. Repnev, Impact of space energetic particles on the Earth’s atmosphere (a review). Geomagn. Aeron. 52, 685–716 (2012). doi:10.1134/S0016793212060060 ADSCrossRefGoogle Scholar
  166. A. Krivolutsky, A. Kuminov, T. Vyushkova, Ionization of the atmosphere caused by solar protons and its influence on ozonosphere of the Earth during 1994–2003. J. Atmos. Sol.-Terr. Phys. 67, 105–117 (2005). doi:10.1016/j.jastp.2004.08.004 ADSCrossRefGoogle Scholar
  167. A.A. Krivolutsky, A.V. Klyuchnikova, G.R. Zakharov, T.Y. Vyushkova, A.A. Kuminov, Dynamical response of the middle atmosphere to solar proton event of July 2000: Three-dimensional model simulations. Adv. Space Res. 37, 1602–1613 (2006). doi:10.1016/j.asr.2005.05.115 ADSCrossRefGoogle Scholar
  168. A.A. Krivolutsky, A.A. Kuminov, A.A. Kukoleva, A.I. Repnev, N.K. Pereyaslova, M.N. Nazarova, Solar proton activity during cycle 23 and changes in the ozonosphere: Numerical simulation and analysis of observational data. Geomagn. Aeron. 48, 432–445 (2008). doi:10.1134/S0016793208040038 ADSCrossRefGoogle Scholar
  169. L. Laakso, T. Anttila, K.E.J. Lehtinen, P.P. Aalto, M. Kulmala, U. Hõrrak, J. Paatero, M. Hanke, F. Arnold, Kinetic nucleation and ions in boreal forest particle formation events. Atmos. Chem. Phys. 4, 2353–2366 (2004) ADSCrossRefGoogle Scholar
  170. B. Laken, D. Kniveton, A. Wolfendale, Forbush decreases, solar irradiance variations, and anomalous cloud changes. J. Geophys. Res. 116, D9201 (2011). doi:10.1029/2010JD014900 ADSCrossRefGoogle Scholar
  171. B.A. Laken, E. Pallé, J. Čalogović, E.M. Dunne, A cosmic ray-climate link and cloud observations. J. Space Weather Space Clim. 2(26), 260000 (2012). doi:10.1051/swsc/2012018 Google Scholar
  172. D.J. Lary, Catalytic destruction of stratospheric ozone. J. Geophys. Res. 102, 21515 (1997). doi:10.1029/97JD00912 ADSCrossRefGoogle Scholar
  173. J. Laštovička, P. Križan, Geomagnetic storms, Forbush decreases of cosmic rays and total ozone at northern higher middle latitudes. J. Atmos. Sol.-Terr. Phys. 67, 119–124 (2005). doi:10.1016/j.jastp.2004.07.021 ADSCrossRefGoogle Scholar
  174. L.L. Lazutin, X-ray emission of auroral electrons and magnetospheric dynamics. Phys. Chem. Space, vol. 14 (Springer, Berlin, 1986), p. 220 Google Scholar
  175. S.-H. Lee, J.M. Reeves, J.C. Wilson, D.E. Hunton, A.A. Viggiano, T.M. Miller, J.O. Ballenthin, L.R. Lait, Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301, 1886–1889 (2003). doi:10.1126/science.1087236 ADSCrossRefGoogle Scholar
  176. K. Liou, P.T. Newell, D.G. Sibeck, C.-I. Meng, M. Brittnacher, G. Parks, Observation of IMF and seasonal effects in the location of auroral substorm onset. J. Geophys. Res. 106, 5799–5810 (2001). doi:10.1029/2000JA003001 ADSCrossRefGoogle Scholar
  177. J.A. Lockwood, W.R. Webber, L. Hsieh, Solar flare proton rigidity spectra deduced from cosmic ray neutron monitor observations. J. Geophys. Res. 79, 4149–4155 (1974). doi:10.1029/JA079i028p04149 ADSCrossRefGoogle Scholar
  178. M. Lockwood, M.J. Owens, L. Barnard, C.J. Davis, F. Steinhilber, The persistence of solar activity indicators and the descent of the Sun into Maunder Minimum conditions. Geophys. Res. Lett. 38, L22105 (2011). doi:10.1029/2011GL049811 ADSCrossRefGoogle Scholar
  179. Y. Logachev, Catalogues of Solar Proton Events (IZMIRAN, Moscow, 1982) Google Scholar
  180. Y. Logachev, Catalogues of Solar Proton Events (WDC B, Moscow, 1990) Google Scholar
  181. Y. Logachev, Catalogues of Solar Proton Events (Moscow University Press, Moscow, 1998) Google Scholar
  182. M. López-Puertas, B. Funke, S. Gil-López, T. von Clarmann, G.P. Stiller, M. Höpfner, S. Kellmann, G. Mengistu Tsidu, H. Fischer, C.H. Jackman, \(\mathrm{HNO}_{3}\), \(\mathrm{N}_{2}\mathrm{O}_{5}\), and \(\mathrm{ClONO}_{2}\) enhancements after the October-November 2003 solar proton events. J. Geophys. Res. 110, A9 (2005). doi:10.1029/2005JA011051 Google Scholar
  183. K.R. Lorentzen, M.D. Looper, J.B. Blake, Relativistic electron microbursts during the GEM storms. J. Geophys. Res. 28, 2573–2576 (2001). doi:10.1029/2001GL012926 Google Scholar
  184. E.R. Lovejoy, J. Curtius, K.D. Froyd, Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res. 109, D8204 (2004). doi:10.1029/2003JD004460 ADSCrossRefGoogle Scholar
  185. A.T.Y. Lui, W.W. Lai, K. Liou, C.I. Meng, A new technique for short-term forecast of auroral activity. Geophys. Res. Lett. 30, L1258 (2003). doi:10.1029/2002GL016505 ADSCrossRefGoogle Scholar
  186. L.R. Lyons, Magnetospheric processes leading to precipitation. Space Sci. Rev. 80(1–2), 109–132 (1997). doi:10.1023/A:1004977704864 ADSCrossRefGoogle Scholar
  187. V.S. Makhmutov, G.A. Bazilevskaya, M.B. Krainev, Characteristics of energetic electron precipitation into the Earth’s polar atmosphere and geomagnetic conditions. Adv. Space Res. 31, 1087–1092 (2003). doi:10.1016/S0273-1177(02)00814-1 ADSCrossRefGoogle Scholar
  188. V.S. Makhmutov, G.A. Bazilevskaya, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, Long-term balloon cosmic ray experiment: Results of analysis of energetic electron precipitation events. Int. J. Mod. Phys. A 20, 6843–6845 (2005). doi:10.1142/S0217751X05030260 ADSCrossRefGoogle Scholar
  189. F. Märcz, Short-term changes in atmospheric electricity associated with Forbush decreases. J. Atmos. Sol.-Terr. Phys. 59, 975–982 (1997). doi:10.1016/S1364-6826(96)00076-4 ADSCrossRefGoogle Scholar
  190. R. Markson, Solar modulation of atmospheric electrification and possible implications for the Sun-weather relationship. Nature 273, 103–109 (1978). doi:10.1038/273103a0 ADSCrossRefGoogle Scholar
  191. R. Markson, Modulation of the Earth’s electric field by cosmic radiation. Nature 291, 304–308 (1981). doi:10.1038/291304a0 ADSCrossRefGoogle Scholar
  192. R. Markson, M. Muir, Solar wind control of the Earth’s electric field. Science 208, 979–990 (1980). doi:10.1126/science.208.4447.979 ADSCrossRefGoogle Scholar
  193. N. Marsh, H. Svensmark, Cosmic rays, clouds, and climate. Space Sci. Rev. 94, 215–230 (2000) ADSCrossRefGoogle Scholar
  194. D.R. Marsh, R.R. Garcia, D.E. Kinnison, B.A. Boville, F. Sassi, S.C. Solomon, K. Matthes, Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res. 112, D23306 (2007). doi:10.1029/2006JD008306 ADSCrossRefGoogle Scholar
  195. K.G. McCracken, J. Beer, Long-term changes in the cosmic ray intensity at Earth, 1428–2005. J. Geophys. Res. 112, A10101 (2007). doi:10.1029/2006JA012117 ADSCrossRefGoogle Scholar
  196. S.B. Mende, H.U. Frey, T.J. Immel, J.-C. Gerard, B. Hubert, S.A. Fuselier, Global imaging of proton and electron aurorae in the far ultraviolet. Space Sci. Rev. 109, 211–254 (2003). doi:10.1023/B:SPAC.0000007520.23689.08 ADSCrossRefGoogle Scholar
  197. N.P. Meredith, R.B. Horne, M.M. Lam, M.H. Denton, J.E. Borovsky, J.C. Green, Energetic electron precipitation during high-speed solar wind stream driven storms. J. Geophys. Res. 116, A5223 (2011). doi:10.1029/2010JA016293 ADSCrossRefGoogle Scholar
  198. R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, D.K. Haggerty, M.I. Desai, Long-term fluences of solar energetic particles from H to Fe. Space Sci. Rev. 130, 323–328 (2007). doi:10.1007/s11214-007-9200-8 ADSCrossRefGoogle Scholar
  199. R.M. Millan, R.M. Thorne, Review of radiation belt relativistic electron losses. J. Atmos. Sol.-Terr. Phys. 69, 362–377 (2007). doi:10.1016/j.jastp.2006.06.019 ADSCrossRefGoogle Scholar
  200. R.M. Millan, R.P. Lin, D.M. Smith, K.R. Lorentzen, M.P. McCarthy, X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys. Res. Lett. 29, L2194 (2002). doi:10.1029/2002GL015922 ADSCrossRefGoogle Scholar
  201. R.M. Millan, R.P. Lin, D.M. Smith, M.P. McCarthy, Observation of relativistic electron precipitation during a rapid decrease of trapped relativistic electron flux. Geophys. Res. Lett. 34, 10101 (2007). doi:10.1029/2006GL028653 ADSCrossRefGoogle Scholar
  202. I.A. Mironova, I.G. Usoskin, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: A case study. Atmos. Chem. Phys. 13, 8543–8550 (2013). doi:10.5194/acp-13-8543-2013 ADSCrossRefGoogle Scholar
  203. I.A. Mironova, I.G. Usoskin, Possible effect of strong solar energetic particle events on polar stratospheric aerosol: A summary of observational results. Environ. Res. Lett. 9(1), 015002 (2014). doi:10.1088/1748-9326/9/1/015002 ADSCrossRefGoogle Scholar
  204. I.A. Mironova, L. Desorgher, I.G. Usoskin, E.O. Flückiger, R. Bütikofer, Variations of aerosol optical properties during the extreme solar event in January 2005. Geophys. Res. Lett. 35, L18610 (2008). doi:10.1029/2008GL035120 ADSCrossRefGoogle Scholar
  205. I.A. Mironova, I.G. Usoskin, G.A. Kovaltsov, S.V. Petelina, Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: Direct observational evidence. Atmos. Chem. Phys. 12, 769–778 (2012). doi:10.5194/acp-12-769-2012 ADSCrossRefGoogle Scholar
  206. L.I. Miroshnichenko, J.A. Perez-Peraza, Astrophysical aspects in the studies of solar cosmic rays. Int. J. Mod. Phys. A 23, 1–141 (2008). doi:10.1142/S0217751X08037312 ADSCrossRefGoogle Scholar
  207. A. Mishev, I. Usoskin, Computations of cosmic ray propagation in the Earth’s atmosphere, towards a GLE analysis. J. Phys. Conf. Ser. 409(1), 012152 (2013). doi:10.1088/1742-6596/409/1/012152 ADSCrossRefGoogle Scholar
  208. A.L. Mishev, P.I.Y. Velinov, Normalized ionization yield function for various nuclei obtained with full Monte Carlo simulations. Adv. Space Res. 48, 19–24 (2011). doi:10.1016/j.asr.2011.02.008 ADSCrossRefGoogle Scholar
  209. H. Moraal, M.S. Potgieter, P.H. Stoker, A.J. van der Walt, Neutron monitor latitude survey of cosmic ray intensity during the 1986/1987 solar minimum. J. Geophys. Res. 94, 1459–1464 (1989). doi:10.1029/JA094iA02p01459 ADSCrossRefGoogle Scholar
  210. H. Moraal, A. Belov, J.M. Clem, Design and co-ordination of multi-station international neutron monitor networks. Space Sci. Rev. 93, 285–303 (2000). doi:10.1023/A:1026504814360 ADSCrossRefGoogle Scholar
  211. O. Morgenstern, M.A. Giorgetta, K. Shibata, V. Eyring, D.W. Waugh, T.G. Shepherd, H. Akiyoshi, J. Austin, A.J.G. Baumgaertner, S. Bekki, P. Braesicke, C. Brühl, M.P. Chipperfield, D. Cugnet, M. Dameris, S. Dhomse, S.M. Frith, H. Garny, A. Gettelman, S.C. Hardiman, M.I. Hegglin, P. Jöckel, D.E. Kinnison, J.-F. Lamarque, E. Mancini, E. Manzini, M. Marchand, M. Michou, T. Nakamura, J.E. Nielsen, D. Olivié, G. Pitari, D.A. Plummer, E. Rozanov, J.F. Scinocca, D. Smale, H. Teyssèdre, M. Toohey, W. Tian, Y. Yamashita, Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res. 115, D00M02 (2010). doi:10.1029/2009JD013728 Google Scholar
  212. R.P. Mühleisen, The Global Circuit and Its Parameters (Dietrich Steinkopff Verlag, Darmstadt, 1977), pp. 467–476. 3798504350 Google Scholar
  213. R. Nakamura, N.D. Baker, J.B. Blake, S. Kanekal, B. Klecker, D. Hovestadt, Relativistic electron precipitation enhancements near the outer edge of the radiation belt. Geophys. Res. Lett. 22, 1129–1132 (1995). doi:10.1029/95GL00378 ADSCrossRefGoogle Scholar
  214. R. Nakamura, M. Isowa, Y. Kamide, D.N. Baker, J.B. Blake, M. Looper, SAMPEX observations of precipitation bursts in the outer radiation belt. Geophys. Res. Lett. 105, 15875–15886 (2000). doi:10.1029/2000JA900018 CrossRefGoogle Scholar
  215. H.V. Neher, Cosmic-ray particles that changed from 1954 to 1958 to 1965. J. Geophys. Res. 72, 1527 (1967). doi:10.1029/JZ072i005p01527 ADSCrossRefGoogle Scholar
  216. H.V. Neher, Cosmic rays at high latitudes and altitudes covering four solar maxima. J. Geophys. Res. 76, 1637–1651 (1971). doi:10.1029/JA076i007p01637 ADSCrossRefGoogle Scholar
  217. J. Nevalainen, I.G. Usoskin, A. Mishev, Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv. Space Res. 52, 22–29 (2013). doi:10.1016/j.asr.2013.02.020 ADSCrossRefGoogle Scholar
  218. P.T. Newell, Y.I. Feldstein, Y.I. Galperin, C.-I. Meng, Morphology of nightside precipitation. J. Geophys. Res. 101, 10737–10748 (1996). doi:10.1029/95JA03516 ADSCrossRefGoogle Scholar
  219. P.T. Newell, C.-I. Meng, K.M. Lyons, Suppression of discrete aurorae by sunlight. Nature 381, 766–767 (1996). doi:10.1038/381766a0 ADSCrossRefGoogle Scholar
  220. P.T. Newell, T. Sotirelis, S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora. AGU Fall Meeting Abstracts, 1511 (2009) Google Scholar
  221. P.T. Newell, T. Sotirelis, K. Liou, A.R. Lee, S. Wing, J. Green, R. Redmon, Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images. Space Weather 8, 12004 (2010). doi:10.1029/2010SW000604 ADSCrossRefGoogle Scholar
  222. P.T. Newell, T. Sotirelis, S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora. J. Geophys. Res. 115, A3216 (2010). doi:10.1029/2009JA014805 ADSCrossRefGoogle Scholar
  223. M. Nicolet, On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere. Planet. Space Sci. 23, 637–649 (1975). doi:10.1016/0032-0633(75)90104-X ADSCrossRefGoogle Scholar
  224. K.A. Nicoll, R.G. Harrison, Experimental determination of layer cloud edge charging from cosmic ray ionisation. Geophys. Res. Lett. 37, L13802 (2010). doi:10.1029/2010GL043605 ADSCrossRefGoogle Scholar
  225. H. Nieder, H. Winkler, D.R. Marsh, M. Sinnhuber, \(\mathrm{NO}_{x}\) production due to energetic particle precipitation in the MLT region: Results from ion chemistry model studies. J. Geophys. Res. 119, 2137–2148 (2014). doi:10.1002/2013JA019044 CrossRefGoogle Scholar
  226. K. O’Brien, Secular variations in the production of cosmogenic isotopes in the earth’s atmosphere. J. Geophys. Res. 84, 423–431 (1979) ADSCrossRefGoogle Scholar
  227. D.E. Olson, The evidence for auroral effects on atmospheric electricity. Pure Appl. Geophys. 84, 118–138 (1971). doi:10.1007/BF00875461 ADSCrossRefGoogle Scholar
  228. Y.E. Ozolin, I.L. Karol’, E.V. Rozanov, T.A. Egorova, A model of the impact of solar proton events on the ionic and gaseous composition of the mesosphere. Izv., Atmos. Ocean. Phys. 45, 737–750 (2009). doi:10.1134/S0001433809060073 CrossRefGoogle Scholar
  229. Particle Data Group, Review of particle physics. Phys. Lett. B 592, 228–234 (2004). doi:10.1016/j.physletb.2004.06.001 ADSGoogle Scholar
  230. W.D. Pesnell, R.A. Goldberg, C.H. Jackman, D.L. Chenette, E.E. Gaines, A search of UARS data for ozone depletions caused by the highly relativistic electron precipitation events of May 1992. J. Geophys. Res. 104, 165–176 (1999). doi:10.1029/1998JA900030 ADSCrossRefGoogle Scholar
  231. W.D. Pesnell, R.A. Goldberg, C.H. Jackman, D.L. Chenette, E.E. Gaines, Variation of mesospheric ozone during the highly relativistic electron event in May 1992 as measured by the High Resolution Doppler Imager instrument on UARS. J. Geophys. Res. 105, 22943–22954 (2000). doi:10.1029/2000JA000091 ADSCrossRefGoogle Scholar
  232. J.R. Pierce, P.J. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett. 36, L9820 (2009). doi:10.1029/2009GL037946 ADSCrossRefGoogle Scholar
  233. C. Plainaki, A. Belov, E. Eroshenko, H. Mavromichalaki, V. Yanke, Modeling ground level enhancements: Event of 20 January 2005. J. Geophys. Res. 112, A4102 (2007). doi:10.1029/2006JA011926 ADSCrossRefGoogle Scholar
  234. H.S. Porter, C.H. Jackman, A.E.S. Green, Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys. 65, 154–167 (1976). doi:10.1063/1.432812 ADSCrossRefGoogle Scholar
  235. M. Potgieter, Solar Modulation of Cosmic Rays. Living Rev. Sol. Phys. 10, 3 (2013). doi:10.12942/lrsp-2013-3 ADSGoogle Scholar
  236. G.W. Prölss, Space weather effects in the upper atmosphere: Low and middle latitudes, in Space Weather: The Physics Behind a Slogan, ed. by K. Scherer, H. Fichter, B. Herber Lecture Notes in Physics, vol. 656 (Springer, Berlin, 2004), p. 193. doi:10.1007/b100037 Google Scholar
  237. M. Quack, M.-B. Kallenrode, M. von Koenig, K. Kuenzi, J. Burrows, B. Heber, E. Wolff, Ground level events and consequences for stratospheric chemistry, in International Cosmic Ray Conference, vol. 10, 2001, p. 4023 Google Scholar
  238. C.E. Randall, V.L. Harvey, C.S. Singleton, S.M. Bailey, P.F. Bernath, M. Codrescu, H. Nakajima, J.M. Russell, Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. J. Geophys. Res. 112, D8308 (2007). doi:10.1029/2006JD007696 ADSCrossRefGoogle Scholar
  239. J.B. Reagan, R.E. Meyerott, R.W. Nightingale, R.C. Gunton, R.G. Johnson, J.E. Evans, W.L. Imhof, D.F. Heath, A.J. Krueger, Effects of the August 1972 solar particle events on stratospheric ozone. J. Geophys. Res. 86, 1473–1494 (1981). doi:10.1029/JA086iA03p01473 ADSCrossRefGoogle Scholar
  240. J.B. Reagan, R.E. Meyerott, J.E. Evans, W.L. Imhof, R.G. Joiner, The effects of energetic particle precipitation on the atmospheric electric circuit. J. Geophys. Res. 88, 3869–3878 (1983). doi:10.1029/JC088iC06p03869 ADSCrossRefGoogle Scholar
  241. T. Reddmann, R. Ruhnke, S. Versick, W. Kouker, Modeling disturbed stratospheric chemistry during solar-induced \(\mathrm{NO}_{x}\) enhancements observed with MIPAS/ENVISAT. J. Geophys. Res. 115, D00I11 (2010). doi:10.1029/2009JD012569 CrossRefGoogle Scholar
  242. G.D. Reeves, M.G. Taylor, R.H. Friedel, Y. Chen, Relativistic electron equatorial phase space densities gradients from 4 to 20 Re. AGU Fall Meeting Abstracts, 488 (2003) Google Scholar
  243. R. Reiter, Solar flares and their impact on potential gradient and air-earth current characteristics at high mountain stations. Pure Appl. Geophys. 72, 259–267 (1969). doi:10.1007/BF00875709 ADSCrossRefGoogle Scholar
  244. A.I. Repnev, A.A. Krivolutsky, Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin (Review). Izv., Atmos. Ocean. Phys. 46, 535–562 (2010). doi:10.1134/S0001433810050014 CrossRefGoogle Scholar
  245. J.D. Richardson, J.C. Kasper, A.J. Lazarus, K.I. Paularena, A. Wallace, Solar cycle variation of shocks in the heliosphere. AGU Fall Meeting Abstracts, 1 (2001) Google Scholar
  246. H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (1969) Google Scholar
  247. R.G. Roble, On solar-terrestrial relationships in atmospheric electricity. J. Geophys. Res. 90, 6000–6012 (1985). doi:10.1029/JD090iD04p06000 ADSCrossRefGoogle Scholar
  248. R.G. Roble, I. Tzur, The Global Atmospheric-Electrical Circuit (The National Academies Press, Washington D.C., 1986), pp. 206–231. ISBN: 9780309036801 Google Scholar
  249. C.J. Rodger, M.A. Clilverd, D. Nunn, P.T. Verronen, J. Bortnik, E. Turunen, Storm time, short-lived bursts of relativistic electron precipitation detected by subionospheric radio wave propagation. J. Geophys. Res. 112, A7301 (2007). doi:10.1029/2007JA012347 ADSCrossRefGoogle Scholar
  250. C.J. Rodger, M.A. Clilverd, J.C. Green, M.M. Lam, Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere. J. Geophys. Res. 115, A4202 (2010). doi:10.1029/2008JA014023 ADSCrossRefGoogle Scholar
  251. B. Rossi, System of units for nuclear and cosmic-ray phenomena. Phys. Rev. 57, 660 (1940). doi:10.1103/PhysRev.57.660 ADSCrossRefGoogle Scholar
  252. R. Roussel-Dupré, J.J. Colman, E. Symbalisty, D. Sentman, V.P. Pasko, Physical processes related to discharges in planetary atmospheres. Space Sci. Rev. 137, 51–82 (2008). doi:10.1007/s11214-008-9385-5 ADSCrossRefGoogle Scholar
  253. E. Rozanov, M. Calisto, T. Egorova, T. Peter, W. Schmutz, Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 33, 483–501 (2012). doi:10.1007/s10712-012-9192-0 ADSCrossRefGoogle Scholar
  254. E.V. Rozanov, T.A. Egorova, A.I. Shapiro, W.K. Schmutz, Modeling of the atmospheric response to a strong decrease of the solar activity, in Comparative Magnetic Minima: Characterizing Quite Times in the Sun and Stars, ed. by C.H. Mandrini, D.F. Webb Proceedings of the International Astronomical Union, vol. 6 (Cambridge University Press, Cambridge, 2012), pp. 215–224. 286th Symposium of the International-Astronomical-Union, Mendoza, Argentina, Oct. 03–07, 2011. 978-1-107-01986-7. doi:10.1017/S1743921312004863 Google Scholar
  255. D.W. Rusch, J.-C. Gerard, S. Solomon, P.J. Crutzen, G.C. Reid, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. I—Odd nitrogen. Planet. Space Sci. 29, 767–774 (1981). doi:10.1016/0032-0633(81)90048-9 ADSCrossRefGoogle Scholar
  256. M.J. Rycroft, K.A. Nicoll, K.L. Aplin, R.G. Harrison, Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. (2012). doi:10.1016/j.jastp.2012.03.015
  257. K. Schlegel, G. Diendorfer, S. Thern, M. Schmidt, Thunderstorms, lightning and solar activity-Middle Europe. J. Atmos. Sol.-Terr. Phys. 63, 1705–1713 (2001). doi:10.1016/S1364-6826(01)00053-0 ADSCrossRefGoogle Scholar
  258. L.H. Seeley, G.T. Seidler, J.G. Dash, Laboratory investigation of possible ice nucleation by ionizing radiation in pure water at tropospheric temperatures. J. Geophys. Res. 106, 3033–3036 (2001). doi:10.1029/2000JD900670 ADSCrossRefGoogle Scholar
  259. K. Semeniuk, V.I. Fomichev, J.C. McConnell, C. Fu, S.M.L. Melo, I.G. Usoskin, Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 11, 5045–5077 (2011). doi:10.5194/acp-11-5045-2011 ADSCrossRefGoogle Scholar
  260. A. Seppälä, M.A. Clilverd, C.J. Rodger, \(\mathrm{NO}_{x}\) enhancements in the middle atmosphere during 2003–2004 polar winter: Relative significance of solar proton events and the aurora as a source. J. Geophys. Res. 112, D23303 (2007). doi:10.1029/2006JD008326 ADSCrossRefGoogle Scholar
  261. A. Seppälä, K. Matthes, C. E. Rondall, I. A. Mironova What is the solar influence on climate? Overview of activities during CAWSES-II. Prog. Earth Planet. Sci. 1, 24 (2014). doi:10.1186/s40645-014-0024-3 ADSCrossRefGoogle Scholar
  262. V.A. Sergeev, M.V. Malkov, Diagnostics of the magnetic configuration of the plasma sheet according to measurements of energetic electrons above the ionosphere. Geomagn. Aeron. 28, 649–654 (1988) ADSGoogle Scholar
  263. V.A. Sergeev, A.G. Iakhnin, R. Pellinen, Mutual location and magnetospheric sources of the penetration of energetic electrons and diffuse and discrete auroras at a preliminary substorm phase. Geomagn. Aeron. 23, 972–978 (1983) ADSGoogle Scholar
  264. V.A. Sergeev, M. Malkov, K. Mursula, Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail. J. Geophys. Res. 98, 7609–7620 (1993). doi:10.1029/92JA02587 ADSCrossRefGoogle Scholar
  265. V.A. Sergeev, G.R. Bikkuzina, P.T. Newell, Dayside isotropic precipitation of energetic protons. Ann. Geophys. 15, 1233–1245 (1997). doi:10.1007/s00585-997-1233-5 ADSCrossRefGoogle Scholar
  266. V.M. Sheftel, O.I. Bandilet, A.N. Yaroshenko, A.K. Chernyshev, Space-time structure and reasons of global, regional, and local variations of atmospheric electricity. J. Geophys. Res. 99, D10797 (1994). doi:10.1029/93JD02857 ADSCrossRefGoogle Scholar
  267. E.P. Shettle, M.T. DeLand, G.E. Thomas, J.J. Olivero, Long term variations in the frequency of polar mesospheric clouds in the Northern Hemisphere from SBUV. Geophys. Res. Lett. 36, L2803 (2009). doi:10.1029/2008GL036048 ADSCrossRefGoogle Scholar
  268. J.A. Simpson, The Latitude Dependence of Neutron Densities in the Atmosphere as a Function of Altitude. Phys. Rev. 73, 1389–1391 (1948). doi:10.1103/PhysRev.73.1389 ADSCrossRefGoogle Scholar
  269. J.A. Simpson, Elemental and isotopic composition of the Galactic cosmic rays. Annu. Rev. Nucl. Part. Sci. 33, 323–382 (1983). doi:10.1146/annurev.ns.33.120183.001543 ADSCrossRefGoogle Scholar
  270. J.A. Simpson, A brief history of recurrent solar modulation of the Galactic cosmic rays (1937–1990). Space Sci. Rev. 83, 169–176 (1998) ADSCrossRefGoogle Scholar
  271. J.A. Simpson, W. Fonger, S.B. Treiman, Cosmic radiation intensity-time variations and their origin. I. Neutron intensity variation method and meteorological factors. Phys. Rev. 90, 934–950 (1953). doi:10.1103/PhysRev.90.934 ADSCrossRefGoogle Scholar
  272. B.-M. Sinnhuber, P. von der Gathen, M. Sinnhuber, M. Rex, G. König-Langlo, S.J. Oltmans, Large decadal scale changes of polar ozone suggest solar influence. Atmos. Chem. Phys. 6(7), 1835–1841 (2006). doi:10.5194/acp-6-1835-2006. ADSCrossRefGoogle Scholar
  273. M. Sinnhuber, H. Nieder, N. Wieters, Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surv. Geophys. 33, 1281–1334 (2012). doi:10.1007/s10712-012-9201-3 ADSCrossRefGoogle Scholar
  274. M. Sinnhuber, B. Funke, T. von Clarmann, M. Lopez-Puertas, G.P. Stiller, A. Seppälä, Variability of \(\mathrm{NO}_{x}\) in the polar middle atmosphere from October 2003 to March 2004: vertical transport vs. local production by energetic particles. Atmos. Chem. Phys. 14, 7681–7692 (2014). doi:10.5194/acp-14-7681-2014 ADSCrossRefGoogle Scholar
  275. D.F. Smart, M.A. Shea, E.O. Flückiger, Magnetospheric models and trajectory computations. Space Sci. Rev. 93, 305–333 (2000). doi:10.1023/A:1026556831199 ADSCrossRefGoogle Scholar
  276. D.F. Smart, M.A. Shea, A.J. Tylka, P.R. Boberg, A geomagnetic cutoff rigidity interpolation tool: Accuracy verification and application to space weather. Adv. Space Res. 37, 1206–1217 (2006). doi:10.1016/j.asr.2006.02.011 ADSCrossRefGoogle Scholar
  277. D.M. Smith, R.P. Lin, K.A. Anderson, K. Hurley, C.M. Johns, High-resolution spectra of 20–300 keV hard X-rays from electron precipitation over Antarctica. J. Geophys. Res. 100, 19675–19686 (1995). doi:10.1029/95JA01472 ADSCrossRefGoogle Scholar
  278. A.K. Smith, R.R. Garcia, D.R. Marsh, J.H. Richter, WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res. 116, D20115 (2011). doi:10.1029/2011JD016083 ADSCrossRefGoogle Scholar
  279. S. Solomon, P.J. Crutzen, Analysis of the August 1972 solar proton event including chlorine chemistry. J. Geophys. Res. 86, 1140–1146 (1981). doi:10.1029/JC086iC02p01140 ADSCrossRefGoogle Scholar
  280. S. Solomon, D.W. Rusch, J.-C. Gerard, G.C. Reid, P.J. Crutzen, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. II—odd hydrogen. Planet. Space Sci. 29, 885–893 (1981). doi:10.1016/0032-0633(81)90078-7 ADSCrossRefGoogle Scholar
  281. S. Solomon, R.G. Roble, P.J. Crutzen, Photochemical coupling between the thermosphere and the lower atmosphere. I—Odd nitrogen from 50 to 120 km. J. Geophys. Res. 87, 7206–7220 (1982). doi:10.1029/JC087iC09p07206 ADSCrossRefGoogle Scholar
  282. T. Stanev, High Energy Cosmic Rays (2010). doi:10.1007/978-3-540-85148-6 CrossRefGoogle Scholar
  283. Y.I. Stozhkov, N.S. Svirzhevsky, G.A. Bazilevskaya, A.N. Kvashnin, V.S. Makhmutov, A.K. Svirzhevskaya, Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 44, 1124–1137 (2009). doi:10.1016/j.asr.2008.10.038 ADSCrossRefGoogle Scholar
  284. R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, Modeling ground and space based cosmic ray observations. Adv. Space Res. 49, 392–407 (2012). doi:10.1016/j.asr.2011.10.006 ADSCrossRefGoogle Scholar
  285. H. Svensmark, T. Bondo, J. Svensmark, Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett. 361, L15101 (2009). doi:10.1029/2009GL038429 ADSGoogle Scholar
  286. R.M. Thorne, T.P. O’Brien, Y.Y. Shprits, D. Summers, R.B. Horne, Timescale for MeV electron microburst loss during geomagnetic storms. J. Geophys. Res. 110, A9202 (2005). doi:10.1029/2004JA010882 ADSCrossRefGoogle Scholar
  287. R.M. Thorne, B. Ni, X. Tao, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467, 943–946 (2010). doi:10.1038/nature09467 ADSCrossRefGoogle Scholar
  288. B.A. Tinsley, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 94, 231–258 (2000) ADSCrossRefGoogle Scholar
  289. B.A. Tinsley, R.P. Rohrbaugh, M. Hei, K.V. Beard, Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. J. Atmos. Sci. 57, 2118–2134 (2000) ADSCrossRefGoogle Scholar
  290. O.W. Torreson, W.C. Parkinson, O.H. Gish, G.R. Wait, Ocean atmospheric-electric results, in Oceanography III: Scientific Results of Cruise VII During 1928–1929 under Command of Captain J.P. Ault (Carnegie Institution of Washington, Researches of the Department of Terrestrial Magnetism, Washington 1946) Google Scholar
  291. S.N. Tripathi, S. Vishnoi, S. Kumar, R.G. Harrison, Computationally-efficient expressions for the collision efficiency between electrically charged aerosol particles and cloud droplets. ArXiv Physics e-prints (2006) Google Scholar
  292. I. Tzur, R.G. Roble, C.C. Reid, H.C. Zhuang, The response of the Earth’s global electrical circuit to a solar proton event, in Weather and Climate Responses to Solar Variations, ed. by B.M. McCormac, 1983, pp. 427–435 Google Scholar
  293. I.G. Usoskin, Cosmic rays and climate forcing. Mem. Soc. Astron. Ital. 82, 937–942 (2011) ADSGoogle Scholar
  294. I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi:10.12942/lrsp-2013-1 ADSGoogle Scholar
  295. I.G. Usoskin, G.A. Kovaltsov, Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. 111, D21206 (2006). doi:10.1029/2006JD007150 ADSCrossRefGoogle Scholar
  296. I.G. Usoskin, H. Kananen, K. Mursula, P. Tanskanen, G.A. Kovaltsov, Correlative study of solar activity and cosmic ray intensity. J. Geophys. Res. 103, 9567–9574 (1998). doi:10.1029/97JA03782 ADSCrossRefGoogle Scholar
  297. I.G. Usoskin, O.G. Gladysheva, G.A. Kovaltsov, Cosmic ray-induced ionization in the atmosphere: Spatial and temporal changes. J. Atmos. Sol.-Terr. Phys. 66, 1791–1796 (2004). doi:10.1016/j.jastp.2004.07.037 ADSCrossRefGoogle Scholar
  298. I.G. Usoskin, K. Alanko-Huotari, G.A. Kovaltsov, K. Mursula, Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004. J. Geophys. Res. 110, A12108 (2005). doi:10.1029/2005JA011250 ADSCrossRefGoogle Scholar
  299. I.G. Usoskin, I. Braun, O.G. Gladysheva, J.R. Hörandel, T. Jämsén, G.A. Kovaltsov, S.A. Starodubtsev, Forbush decreases of cosmic rays: Energy dependence of the recovery phase. J. Geophys. Res. 113, A07102 (2008). doi:10.1029/2007JA012955 ADSGoogle Scholar
  300. I.G. Usoskin, L. Desorgher, P. Velinov, M. Storini, E.O. Flückiger, R. Bütikofer, G.A. Kovaltsov, Ionization of the Earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys. 57, 88–101 (2009). doi:10.2478/s11600-008-0019-9 ADSCrossRefGoogle Scholar
  301. I.G. Usoskin, G.A. Kovaltsov, I.A. Mironova, Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere. J. Geophys. Res. 115, D10302 (2010). doi:10.1029/2009JD013142 ADSCrossRefGoogle Scholar
  302. I.G. Usoskin, G.A. Bazilevskaya, G.A. Kovaltsov, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. 116, A02104 (2011). doi:10.1029/2010JA016105 ADSCrossRefGoogle Scholar
  303. I.G. Usoskin, G.A. Kovaltsov, I.A. Mironova, A.J. Tylka, W.F. Dietrich, Ionization effect of solar particle GLE events in low and middle atmosphere. Atmos. Chem. Phys. 11, 1979–1988 (2011). doi:10.5194/acp-11-1979-2011 ADSCrossRefGoogle Scholar
  304. R. Vainio, L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, R.B. Horne, G.A. Kovaltsov, K. Kudela, M. Laurenza, S. McKenna-Lawlor, H. Rothkaehl, I.G. Usoskin, Dynamics of the Earth’s particle radiation environment. Space Sci. Rev. 147, 187–231 (2009). doi:10.1007/s11214-009-9496-7 ADSCrossRefGoogle Scholar
  305. P.I. Velinov, L.N. Mateev, Response of the middle atmosphere to Galactic cosmic rays. Geomagn. Aeron. 30, 593–598 (1990) ADSGoogle Scholar
  306. P.I.Y. Velinov, S. Asenovski, K. Kudela, J. Lastovicka, L. Mateev, A. Mishev, P. Tonev, Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere. J. Space Weather Space Clim. 3(26), A14 (2013). doi:10.1051/swsc/2013036 ADSCrossRefGoogle Scholar
  307. P.T. Verronen, R. Lehmann, Analysis and of ionic reactions affecting middle atmospheric \(\mathrm{HO}_{x}\) and \(\mathrm{NO}_{x}\) during proton events. Ann. Geophys. 31, 909–956 (2013). doi:10.5194/angeo-31-909-2013 ADSCrossRefGoogle Scholar
  308. P.T. Verronen, E. Turunen, T. Ulich, E. Kyrölä, Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model. Ann. Geophys. 20, 1967–1976 (2002). doi:10.5194/angeo-20-1967-2002 ADSCrossRefGoogle Scholar
  309. P.T. Verronen, B. Funke, M. López-Puertas, G.P. Stiller, T. von Clarmann, N. Glatthor, C. Enell, E. Turunen, J. Tamminen, About the increase of \(HNO_{3}\) in the stratopause region during the Halloween 2003 solar proton event. Geophys. Res. Lett. 35, L20809 (2008). doi:10.1029/2008GL035312 ADSCrossRefGoogle Scholar
  310. P.T. Verronen, C.J. Rodger, M.A. Clilverd, S. Wang, First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts. J. Geophys. Res. 116, D7307 (2011a). doi:10.1029/2010JD014965 ADSCrossRefGoogle Scholar
  311. P.T. Verronen, M.L. Santee, G.L. Manney, R. Lehmann, S.-M. Salmi, A. Seppälä, Nitric acid enhancements in the mesosphere during the January 2005 and December 2006 solar proton events. J. Geophys. Res. 116, D17301 (2011b). doi:10.1029/2011JD016075 ADSCrossRefGoogle Scholar
  312. F.M. Vitt, C.H. Jackman, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model. J. Geophys. Res. 101, 6729–6740 (1996). doi:10.1029/95JD03386 ADSCrossRefGoogle Scholar
  313. T. von Clarmann, N. Glatthor, M. Höpfner, S. Kellmann, R. Ruhnke, G.P. Stiller, H. Fischer, B. Funke, S. Gil-López, M. López-Puertas, Experimental evidence of perturbed odd hydrogen and chlorine chemistry after the October 2003 solar proton events. J. Geophys. Res. 110, A09S45 (2005). doi:10.1029/2005JA011053 Google Scholar
  314. C. von Savigny, M. Sinnhuber, H. Bovensmann, J.P. Burrows, M.-B. Kallenrode, M. Schwartz, On the disappearance of noctilucent clouds during the January 2005 solar proton events. Geophys. Res. Lett. 34, L2805 (2007). doi:10.1029/2006GL028106 ADSCrossRefGoogle Scholar
  315. H.D. Voss, W.L. Imhof, M. Walt, J. Mobilia, E.E. Gaines, J.B. Reagan, U.S. Inan, R.A. Helliwell, D.L. Carpenter, J.P. Katsufrakis, Lightning-induced electron precipitation. Nature 312, 740–742 (1984). doi:10.1038/312740a0 ADSCrossRefGoogle Scholar
  316. H.D. Voss, M. Walt, W.L. Imhof, J. Mobilia, U.S. Inan, Satellite observations of lightning-induced electron precipitation. J. Geophys. Res. 103, 11725–11744 (1998). doi:10.1029/97JA02878 ADSCrossRefGoogle Scholar
  317. P.K. Wang, S.N. Grover, H.R. Pruppacher, On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J. Atmos. Sci. 35, 1735–1743 (1978) ADSCrossRefGoogle Scholar
  318. Y. Wang, D.J. Jacob, J.A. Logan, Global simulation of tropospheric \(\mathrm{O}_{3}\)-\(\mathrm{NO}_{x}\)-hydrocarbon chemistry 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. J. Geophys. Res. 103, 10757–10768 (1998). doi:10.1029/98JD00156 ADSCrossRefGoogle Scholar
  319. C.T.R. Wilson, Investigation on lightning discharges and on the electric field of thunderstorms. Philos. Trans. R. Soc. Lond. A221, 73–115 (1920) ADSGoogle Scholar
  320. J.R. Winckler, Cosmic-ray increase at high altitude on February 23, 1956. Phys. Rev. 104, 220 (1956). doi:10.1103/PhysRev.104.220 ADSCrossRefGoogle Scholar
  321. S. Wing, P.T. Newell, Central plasma sheet ion properties as inferred from ionospheric observations. J. Geophys. Res. 103, 6785–6800 (1998). doi:10.1029/97JA02994 ADSCrossRefGoogle Scholar
  322. H. Winkler, S. Kazeminejad, M. Sinnhuber, M.-B. Kallenrode, J. Notholt, Conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar region. J. Geophys. Res. 114, D00I03 (2009). doi:10.1029/2008JD011587 CrossRefGoogle Scholar
  323. H. Winkler, C. von Savigny, J.P. Burrows, J.M. Wissing, M.J. Schwartz, A. Lambert, M. García-Comas, Impacts of the January 2005 solar particle event on noctilucent clouds and water at the polar summer mesopause. Atmos. Chem. Phys. 12, 5633–5646 (2012). doi:10.5194/acp-12-5633-2012 ADSCrossRefGoogle Scholar
  324. J.M. Wissing, M.-B. Kallenrode, Atmospheric Ionization Module Osnabrück (AIMOS): A 3-D model to determine atmospheric ionization by energetic charged particles from different populations. J. Geophys. Res. 114, A06104 (2009). doi:10.1029/2008JA013884 ADSCrossRefGoogle Scholar
  325. G. Witt, The nature of noctilucent clouds, in Space Res. IX, 1969, pp. 157–169 Google Scholar
  326. WMO, Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project, Report 52, WMO, Geneva, Switzerland, 442 (2011) Google Scholar
  327. F. Yu, Formation of large NAT particles and denitrification in polar stratosphere: possible role of cosmic rays and effect of solar activity. Atmos. Chem. Phys. 4, 2273–2283 (2004) ADSCrossRefGoogle Scholar
  328. A.M. Zadorozhnyi, G.A. Tuchkov, V.N. Kikhtenko, J. Lastovicka, J. Boska, A. Novak, Nitric oxide and lower ionosphere quantities during solar particle events of October 1989 after rocket and ground-based measurements. J. Atmos. Sol.-Terr. Phys. 54, 183–192 (1992) ADSCrossRefGoogle Scholar
  329. Y. Zhang, L.J. Paxton, An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data. J. Atmos. Sol.-Terr. Phys. 70, 1231–1242 (2008). doi:10.1016/j.jastp.2008.03.008 ADSCrossRefGoogle Scholar
  330. H. Ziereis, F. Arnold, Gaseous ammonia and ammonium ions in the free troposphere. Nature 321, 503–505 (1986). doi:10.1038/321503a0 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Irina A. Mironova
    • 1
  • Karen L. Aplin
    • 2
  • Frank Arnold
    • 3
  • Galina A. Bazilevskaya
    • 4
  • R. Giles Harrison
    • 5
  • Alexei A. Krivolutsky
    • 6
  • Keri A. Nicoll
    • 5
  • Eugene V. Rozanov
    • 7
  • Esa Turunen
    • 8
  • Ilya G. Usoskin
    • 9
  1. 1.Earth Physics Department, Institute and Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Physics DepartmentUniversity of OxfordOxfordUK
  3. 3.Atmospheric Physics DivisionMax-Planck-Institute for Nuclear PhysicsHeidelbergGermany
  4. 4.Lebedev Physical InstituteRussian Academy of ScienceMoscowRussia
  5. 5.Department of MeteorologyUniversity of ReadingReading BerksUK
  6. 6.Laboratory for Atmospheric Chemistry and DynamicsCentral Aerological Observatory Russian Federal Service for Hydrometeorology and Environmental MonitoringDolgoprudny, MoscowRussia
  7. 7.PMOD/WRC and IAC ETHZDavos DorfSwitzerland
  8. 8.Sodankylä Geophysical ObservatorySodankyläFinland
  9. 9.Sodankylä Geophysical Observatory (Oulu unit) and ReSoLVE Centre of ExcellenceUniversity of OuluOuluFinland

Personalised recommendations