Skip to main content
Log in

The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth’s Radiation Belt High-Energy Particle Populations

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ∼20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2 sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10−2–106 particles/cm2 s sr MeV) and energy spectra (ΔE/E∼25 %) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • M.H. Acuña et al., in The Global Geospace Mission, ed. by C.T. Russell (Kluwer Academic, Dordrecht, 1996)

    Google Scholar 

  • J. Alcaraz et al., Cosmic protons. Phys. Lett. B 490, 27–35 (2000)

    Article  ADS  Google Scholar 

  • S. Agostinelli et al., Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment. Nucl. Instrum. Methods A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  • C.A.J. Ammerlaan, R.F. Rumphorst, L.A.Ch. Koerts, Particle identification by pulse shape discrimination in the p-I-n type semiconductor detector. Nucl. Instrum. Methods 22, 189–200 (1963)

    Article  ADS  Google Scholar 

  • D.N. Baker, P.R. Higbie, R.D. Belian, E.W. Hones Jr., Do Jovian electrons influence the terrestrial outer radiation zone? Geophys. Res. Lett. 6(6), 531–534 (1979). doi:10.1029/GL006i006p00531

    Article  ADS  Google Scholar 

  • D.N. Baker et al., The Los Alamos geostationary orbit synoptic data set: a compilation of energetic particle data. Los Alamos National Laboratory Report, LA-8843, 1981

  • D.N. Baker et al., Highly relativistic magnetospheric electrons: a role in coupling to the middle atmosphere? Geophys. Res. Lett. 14(10), 1027–1030 (1987). doi:10.1029/GL014i010p01027

    Article  ADS  Google Scholar 

  • D.N. Baker, R.L. McPherron, T.E. Cayton, R.W. Klebesadel, Linear prediction filter analysis of relativistic electron properties at 6.6R E. J. Geophys. Res. 95, 15,133–15,140 (1990). doi:10.1029/JA095iA09p15133

    Article  ADS  Google Scholar 

  • D.N. Baker, G.M. Mason, O. Figueroa, G. Colon, J. Watzin, R. Aleman, An overview of the SAMPEX mission. IEEE Trans. Geosci. Electron. 31, 531 (1993)

    Article  ADS  Google Scholar 

  • D.N. Baker, J.B. Blake, L.B. Callis, J.R. Cummings, D. Hovestadt, S. Kanekal, B. Klecker, R.A. Mewaldt, R.D. Zwickl, Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX. Geophys. Res. Lett. 21, 409 (1994)

    Article  ADS  Google Scholar 

  • D.N. Baker et al., A strong CME-related magnetic cloud interaction with the earth’s magnetosphere: ISTP observation of rapid relativistic electron acceleration on May 15, 1997. Geophys. Res. Lett. 25(15), 2975–2978 (1998). doi:10.1029/98GL01134

    Article  ADS  Google Scholar 

  • D.N. Baker et al., An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003. Nature 432, 878–881 (2004). doi:10.1038/nature03116

    Article  ADS  Google Scholar 

  • D.N. Baker et al., Low-altitude measurements of 2–6 MeV electron trapping lifetimes at 1.5≤l≤2.5. Geophys. Res. Lett. 34, L20110 (2007). doi:10.1029/2007GL03100

    Article  ADS  Google Scholar 

  • D.N. Baker, D. Mitchell, P. O’Brien, RBSP project internal report. JHUAPL, 2008

  • J.-F. Beche, Second order pseudo-Gaussian shaper. Lawrence Berkeley National Laboratory. LBNL Paper LBNL-52855, 2002

  • J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into L<3 on 24 March 1991. Geophys. Res. Lett. 19(8), 821–824 (1992). doi:10.1029/92GL00624

    Article  ADS  Google Scholar 

  • J.B. Blake et al., The MagEIS/ECT instrument on the RBSP mission. Space. Sci. Rev. (2012, this issue)

  • J. Bortnik et al., An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science 324, 5928 (2009)

    Article  Google Scholar 

  • W.R. Cook et al., PET: a proton/electron telescope for studies of magnetospheric, solar, and galactic particles. IEEE Trans. Geosci. Electron. 31, 565 (1993)

    Article  ADS  Google Scholar 

  • S.R. Elkington, M.K. Hudson, A.A. Chan, Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mod Pc-5 ULF oscillations. Geophys. Res. Lett. 26(21), 3273 (1999)

    Article  ADS  Google Scholar 

  • S.R. Elkington, M.K. Hudson, A.A. Chan, Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J. Geophys. Res. 108(A3), 1116 (2003)

    Article  Google Scholar 

  • S.R. Elkington, M. Wiltberger, A.A. Chan, D.N. Baker, Physical models of the geospace radiation environment. J. Atmos. Sol.-Terr. Phys. 66, 1371 (2004)

    Article  ADS  Google Scholar 

  • S.R. Elkington, D.N. Baker, M. Wiltberger, in The Inner Magnetosphere: Physics and Modeling, ed. by T.I. Pulkkinen, N.A. Tsyganenko, R.H.W. Friedel. AGU Geophysical Monograph, vol. 155 (American Geophysical Union, Washington, 2005), p. 147

    Chapter  Google Scholar 

  • T.I. Gombosi, G. Toth, D.L. de Zeeuw, K.C. Hansen, K. Kabin, K.G. Powell, Semirelativistic magnetohydrodynamics and physics-based convergence acceleration. J. Comput. Sci. 177, 176 (2002)

    ADS  MATH  Google Scholar 

  • M.G. Gornov et al., Selection of the shaping circuits of a multilayer semiconductor spectrometer of charged particles. Instrum. Exp. Tech. 45(5), 626–630 (2002)

    Article  Google Scholar 

  • J.C. Green, M.G. Kivelson, Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms. J. Geophys. Res. 109, A03213 (2004). doi:10.1029/2003JA010153

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25(15), 3011–3014 (1998). doi:10.1029/98GL01002

    Article  ADS  Google Scholar 

  • R.B. Horne, N.P. Meredith, R.M. Thorne, D. Heynderickx, R.H.A. Iles, R.R. Anderson, Evolution of energetic electron pitch angle distributions during storm time electron acceleration to megaelectronvolt energies. J. Geophys. Res. 108(A1), 1016 (2003). doi:10.1029/2001JA009165

    Article  Google Scholar 

  • R.B. Horne, D.N. Baker et al., Wave acceleration of electrons in the Van Allen radiation belts. Nature 437, 227–230 (2005a). doi:10.1038/nature03939

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, R.R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 110, A03225 (2005b). doi:10.1029/2004JA010811

    Article  ADS  Google Scholar 

  • M.H. Johnson, J. Kierein, Combined release and radiation effects satellite (CRRES): spacecraft and mission. J. Spacecr. Rockets 29(4), 556–563 (1992). doi:10.2514/3.55641

    Article  ADS  Google Scholar 

  • S.G. Kanekal et al., Magnetospheric response to magnetic cloud (coronal mass ejection) events: relativistic electron observations from SAMPEX and polar. J. Geophys. Res. 104, A11 (1999). doi:10.1029/1999JA900239

    Article  Google Scholar 

  • C.A. Kletzing et al., The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space. Sci. Rev. (2012, this issue)

  • L.J. Lanzerotti et al., Radiation belt storm probes ion composition experiment (RBSPICE). Space Sci. Rev. (2012, this issue)

  • C. Leroy et al., Study of charge transport in non-irradiated and irradiated silicon detectors. Nucl. Instrum. Methods Phys. Res. A426.1, 99–108 (1999)

    Article  ADS  Google Scholar 

  • X. Li et al., Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms. Geophys. Res. Lett. 25, 3763 (1998)

    Article  ADS  Google Scholar 

  • X. Li et al., Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys. Res. Lett. 28(9), 1887–1890 (2001a). doi:10.1029/2000GL012681

    Article  ADS  Google Scholar 

  • X. Li et al., Long term measurements of radiation belts by SAMPEX and their variations. Geophys. Res. Lett. 28(20), 3827–3830 (2001b). doi:10.1029/2001GL013586

    Article  ADS  Google Scholar 

  • B.W. Loo, F.S. Goulding, D. Gao, Ballistic deficits in pulse shaping amplifiers. IEEE Trans. Nucl. Sci. 35.1, 114–118 (1988)

    Article  ADS  Google Scholar 

  • K.R. Lorentzen et al., Multisatellite observations of MeV ion injections during storms. J. Geophys. Res. 107(A9), 1231 (2002). doi:10.1029/2001JA000276

    Article  Google Scholar 

  • J.G. Lyon, J.A. Fedder, C.M. Mobarry, The Lyon-Fedder-Mobarry global MHD magnetospheric simulation code. J. Atmos. Sol.-Terr. Phys. 66(15), 1333 (2004)

    Article  ADS  Google Scholar 

  • J.P. McCollough et al., Physical mechanisms of compressional EMIC wave growth. J. Geophys. Res. 115, A10214 (2010)

    Article  ADS  Google Scholar 

  • B.H. Mauk et al., Science objectives and rational for the Radiation Belt Storm Probes Mission. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9908-y

    Google Scholar 

  • J.E. Mazur et al., The Relativistic-Proton Spectrometer (RPS) for the Radiation Belt Storm Probes Mission. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9926-9

    Google Scholar 

  • R.A. Mewaldt, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303–316 (2006). doi:10.1007/s11214-006-909-0

    Article  ADS  Google Scholar 

  • N.P. Meredith et al., Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. J. Geophys. Res. 108(A6), 1248 (2003). doi:10.1029/2002JA009764

    Article  Google Scholar 

  • C.H. Mosher, Pseudo-Gaussian transfer functions with superlative baseline recovery. IEEE Trans. Nucl. Sci. 23(1), 226–228 (1976)

    Article  ADS  Google Scholar 

  • G.A. Paulikas, J.B. Blake, Effects of the solar wind on magnetospheric dynamics: energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, ed. by W.P. Olson. Geophys. Monogr. Ser., vol. 21 (AGU, Washington, 1979), pp. 180–202

    Chapter  Google Scholar 

  • J. Raeder, Global magnetohydrodynamics, a tutorial, in Space Plasma Simulation, ed. by C.T. Dum, M. Scholer, J. Buchner. Lecture Notes in Physics, vol. 615 (Springer, New York, 2003), p. 212

    Chapter  Google Scholar 

  • J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation (Springer, New York, 1970)

    Book  Google Scholar 

  • I. Roth, M. Temerin, M.K. Hudson, Resonant enhancement of relativistic electron fluxes during geomagnetically active periods. Ann. Geophys. 17, 631 (1999)

    Article  ADS  Google Scholar 

  • T.E. Sarris, X. Li, N. Tsaggas, N. Paschalidis, Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds. J. Geophys. Res. 107(A3), 1033 (2002)

    Article  Google Scholar 

  • Y.Y. Shprits et al., Outward radial diffusion driven by losses at the magnetopause. J. Geophys. Res. 111, A11214 (2006)

    Article  ADS  Google Scholar 

  • H.E. Spence et al., The ECT investigation on the RBSP mission. Space Sci. Rev. (2012, this issue)

  • P.A. Sturrock, Plasma Physics (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  • M.G.G.T. Taylor, R.H.W. Friedel, G.D. Reeves, M.W. Dunlop, T.A. Fritz, P.W. Daly, A. Balogh, Multisatellite measurements of electron phase space density gradients in Earth’s inner and outer magnetosphere. J. Geophys. Res. 109, A05220 (2004)

    Article  ADS  Google Scholar 

  • A.L. Vampola, Measuring energetic electrons—what works and what doesn’t, in Measurement Techniques in Space Plasmas: Particles, ed. by F. Pfaff, E. Borovsky, T. Young. Geophys. Monogr. Ser., vol. 102 (AGU, Washington, 1998), pp. 339–355. doi:10.1029/GM102p0339

    Chapter  Google Scholar 

  • J.A. Van Allen et al., Energetic electrons in the magnetosphere of Jupiter. Science 183, 309 (1974)

    Article  ADS  Google Scholar 

  • J. Vette, The NASA/National Space Science Data Center trapped radiation environment model program (1964–1991). NSSDC Report 91-29, Greenbelt, MD, 1991

  • J. Wygant et al., The EFW investigation and instruments on the RBSP mission. Space. Sci. Rev. (2012, this issue)

Download references

Acknowledgements

We want to express our sincere appreciation to all of our colleagues at the Laboratory for Atmospheric and Space Physics for their support in the successful completion of the REPT instrument. We thank our RBSP and ECT teammates for their assistance, especially J. Bernard Blake, Joseph F. Fennell, Bill Crain, Joseph E. Mazur, John Goldsten, Brian Klatt, and Jim Cravens. We also want to thank the APL payload, spacecraft and mission teams, specifically Lori Suther, Al Reiter, Elliot Rodberg, and Annette Dolbow.

Special thanks to all of the reviewers who contributed their expertise to the improvement of our instrument. In particular we are grateful to Berndt Klecker, Richard Mewaldt, Edward S. Stone, Tycho Von Rosenvinge, Frank B. McDonald, Gary Mullen, Bronislaw Dichter, Gary Galica, Gregory Ginet, and Steve Battel.

This work has been supported by NASA prime contract NAS5-01072 to Johns Hopkins University Applied Physics Laboratory (JHU/APL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, D.N., Kanekal, S.G., Hoxie, V.C. et al. The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth’s Radiation Belt High-Energy Particle Populations. Space Sci Rev 179, 337–381 (2013). https://doi.org/10.1007/s11214-012-9950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9950-9

Keywords

Navigation