Skip to main content

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission

  • Chapter
The Van Allen Probes Mission

Abstract

The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  • F. Allegrini, D.J. McComas, D.T. Young, J.-J. Berthelier, J. Covinhes, J.-M. Illiano, J.-F. Riou, H.O. Funsten, R.W. Harper, Energy loss of 1–50 keV H, He, C, N, O, Ne, Ar ions transmitted through thin carbon foils. Rev. Sci. Instrum. 77, 044501 (2006). doi:10.1063/1.2185490

    Article  ADS  Google Scholar 

  • P.C. Anderson, W.B. Hanson, W.R. Coley, W.R. Hoegy, Spacecraft potential effects on the Dynamics Explorer 2 satellite. J. Geophys. Res. 99(A3), 3985–3997 (1994). doi:10.1029/93JA02104

    Article  ADS  Google Scholar 

  • D.N. Baker, J.B. Blake, R.W. Klebesadel, P.R. Higbie, Highly relativistic electrons in the earth’s outer magnetosphere. I. Lifetimes and temporal history 1979–1984. J. Geophys. Res. 91(A4), 4265–4276 (1986). doi:10.1029/JA091iA04p04265

    Article  ADS  Google Scholar 

  • S.J. Bame, D.J. McComas, M.F. Thomsen, B.L. Barraclough, R.C. Elphic, J.P. Glore, J.T. Gosling, J.C. Chavez, E.P. Evans, F.J. Wymer, Magnetospheric plasma analyzer for spacecraft with constrained resources. Rev. Sci. Instrum. 64, 1026 (1993). doi:10.1063/1.1144173

    Article  ADS  Google Scholar 

  • R.A. Baragiola, E.V. Alonso, A. Oliva Florio, Electron emission from clean metal surfaces induced by low energy light ions. Phys. Rev. B 19, 121–129 (1979). doi:10.1103/PhysRevB.19.121

    Article  ADS  Google Scholar 

  • N.F. Barber, Note on the shape of an electron beam bent in a magnetic field. Proc. Leeds Philos. Lit Soc., Sci. Sect. 2, 427–434 (1933)

    Google Scholar 

  • L.W. Blum, E.A. MacDonald, S.P. Gary, M.F. Thomsen, H.E. Spence, Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times. J. Geophys. Res. 114, A10214 (2009). doi:10.1029/2009JA014396

    Article  ADS  Google Scholar 

  • L.W. Blum, E.A. MacDonald, L.B.N. Clausen, X. Li, A comparison of magnetic field measurements and a plasma-based proxy to infer EMIC wave distributions at geosynchronous orbit. J. Geophys. Res. 117, A05220 (2012). doi:10.1029/2011JA017474

    Article  ADS  Google Scholar 

  • J. Bortnik, R.M. Thorne, N.P. Meredith, Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. J. Geophys. Res. 112, A08204 (2007). doi:10.1029/2006JA012237.112

    ADS  Google Scholar 

  • C.W. Carlson, D.W. Curtis, G. Paschmann, W. Michael, An instrument for rapidly measuring plasma distribution functions with high resolution. Adv. Space Res. 2, 67–70 (1983). doi:10.1016/0273-1177(82)90151-X

    Article  Google Scholar 

  • D.L. Carpenter, R.R. Anderson, An ISEE/Whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res. 97(A2), 1097–1108 (1992). doi:10.1029/91ja01548

    Article  ADS  Google Scholar 

  • D.L. Carpenter, Earth’s plasmasphere awaits rediscovery. Eos 76(9), 89 (1995). doi:10.1029/95EO00041

    Article  ADS  Google Scholar 

  • C. Cattell et al., Discovery of very large amplitude whistler-mode waves in earth’s radiation belts. Geophys. Res. Lett. 35, L01105 (2008). doi:10.1029/2007GL032009

    Article  ADS  Google Scholar 

  • E.P. Chamberlin, K.N. Leung, S. Walthers, R.A. Bibeau, R.L. Stice, G.M. Kelley, J. Wilson, Measurement of the beam energy spread from a microwave ion source. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 26, 227–234 (1987). doi:10.1016/0168-583X(87)90755-5

    Article  ADS  Google Scholar 

  • Y. Chen, G.D. Reeves, R. Friedel, The energization of relativistic electrons in the outer Van Allen radiation belt. Nat. Phys. 3, 614 (2007). doi:10.1038/Nphys655

    Article  Google Scholar 

  • D.A. Dahl, SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200(1–3), 3–25 (2000). doi:10.1016/S1387-3806(00)00305-5

    Article  Google Scholar 

  • I. Daglis, R. Thorne, W. Baumjohann, S. Orsini, The terrestrial ring current: origin, formation, and decay. Rev. Geophys. 37(4), 407–438 (1999). doi:10.1029/1999RG900009

    Article  ADS  Google Scholar 

  • H. Demers, N. Poirier-Demers, A.R. Couture, D. Joly, M. Guilmain, N. De Jonge, D. Drouin, Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning 33, 135–146 (2011). doi:10.1002/sca.20262

    Article  Google Scholar 

  • A.J. Dessler, E.N. Parker, Hydromagnetic theory of geomagnetic storms. J. Geophys. Res. 64, 12 (1959). doi:10.1029/JZ064i012p02239

    Google Scholar 

  • L.A. Dietz, J.C. Sheffield, Secondary electron emission induced by 5–30-keV monatomic ions striking thin oxide films. J. Appl. Phys. 46, 4361–4370 (1975). doi:10.1063/1.321463

    Article  ADS  Google Scholar 

  • D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92–101 (2007). doi:10.1002/sca.20000

    Article  Google Scholar 

  • H.O. Funsten, D.J. McComas, B.L. Barraclough, Thickness uniformity and pinhole density analysis of thin carbon foils using keV ions. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 66, 470–478 (1992a). doi:10.1016/0168-583X(92)95421-M

    Article  ADS  Google Scholar 

  • H.O. Funsten, B.L. Barraclough, D.J. McComas, Pinhole detection in thin foils used in space plasma diagnostic instrumentation. Rev. Sci. Instrum. 63, 4741–4743 (1992b). doi:10.1063/1.1143626

    Article  ADS  Google Scholar 

  • H.O. Funsten, D.J. McComas, B.L. Barraclough, Ultrathin foils used for low energy neutral atom imaging of the terrestrial magnetosphere. Opt. Eng. 32, 3090–3095 (1993). doi:10.1117/12.149187

    Article  ADS  Google Scholar 

  • H.O. Funsten, M. Shappirio, Sputtering of thin carbon foils by 20 keV and 40 keV Ar+ bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 127, 905–909 (1997). doi:10.1016/S0168-583X(97)00079-7

    Article  ADS  Google Scholar 

  • H.O. Funsten, R.W. Harper, D.J. McComas, Absolute detection efficiency of space-based ion mass spectrometers and neutral atom imagers. Rev. Sci. Instrum. 76, 053301 (2005). doi:10.1063/1.1889465

    Article  ADS  Google Scholar 

  • H.O. Funsten, A.A. Guthrie, R.W. Harper, K.H. Kihara, M.P. Manzo, M.J. Fagan, D.J. McComas, S. Weidner, F. Allegrini, D. Everett, B. Rodriguez, G. Dunn, J. Hanley, M. Maple, K. Mashburn, S. Pope, P. Valek, E. Moebius, J. Nolin, S. Ellis, D. Heirtzler, B. King, H. Kucharek, S. Turco, S. Zaffke, D. Reisenfeld, P. Janzen, S.A. Fuselier, M. Gruntman, E. Roelof, P. Wurz, D. Piazza, L. Saul, P. Bochsler, The interstellar boundary explorer high energy (IBEX-Hi) neutral atom imager. Space Sci. Rev. 146, 75–103 (2009). doi:10.1007/s11214-009-9504-y

    Article  ADS  Google Scholar 

  • S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge Univ. Press, New York, 1993)

    Book  Google Scholar 

  • S.A. Glauert, R.B. Horne, Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. 110, A042046 (2005). doi:10.1029/2004JA010851

    Article  Google Scholar 

  • J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, Effects of a long entrance aperture upon the azimuthal response of spherical section electrostatic analyzers. Rev. Sci. Instrum. 49, 1260 (1978). doi:10.1063/1.1135566

    Article  ADS  Google Scholar 

  • J.C. Green, M.G. Kivelson, Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms. J. Geophys. Res. 109, A03213 (2004). doi:10.1029/2003JA010153

    ADS  Google Scholar 

  • K.C. Henderson, R.W. Harper, H.O. Funsten, E. MacDonald, Ultraviolet stimulated electron source for use with low energy plasma instrument calibration. Rev. Sci. Instrum. 83, 073308 (2012). doi:10.1063/1.4732810

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25(15), 3011 (1998). doi:10.1029/98GL01002

    Article  ADS  Google Scholar 

  • R.B. Horne, G.V. Wheeler, H.St.C.K. Alleyne, Proton and electron heating by radially propagating fast magnetosonic waves. J. Geophys. Res. 105(A12), 27,597–27,610 (2000). doi:10.1029/2000JA000018

    Article  ADS  Google Scholar 

  • J.C. Ingraham, T.E. Cayton, R.D. Belian, R.A. Christensen, R.H.W. Friedel, M.M. Meier, G.D. Reeves, M. Tuszewski, Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991. J. Geophys. Res. 106(A11), 25759–25776 (2001). doi:10.1029/2000ja000458

    Article  ADS  Google Scholar 

  • V.K. Jordanova, J.U. Kozyra, G.V. Khazanov, A.F. Nagy, C.E. Rasmussen, M.-C. Fok, A bounce-averaged kinetic-model of the ring current ion population. Geophys. Res. Lett. 21(25), 2785–2788 (1994). doi:10.1029/94GL02695

    Article  ADS  Google Scholar 

  • H.J. Kim, A.A. Chan, Fully-adiabatic changes in storm-time relativistic electron fluxes. J. Geophys. Res. 102(A10), 22107–22116 (1997). doi:10.1029/97JA01814

    Article  ADS  Google Scholar 

  • S.M. Krimigis, G. Gloeckler, R.W. McEntire, T.A. Potemra, F.L. Scarf, E.G. Shelley, Magnetic storm of September 4, 1984: a synthesis of ring current spectra and energy densities measured with AMPTE/CCE. Geophys. Res. Lett. 12(5), 329–332 (1985). doi:10.1029/GL012i005p00329

    Article  ADS  Google Scholar 

  • K.N. Leung, S.R. Walther, H.W. Owren, A compact microwave ion source. IEEE Trans. Nucl. Sci. NS-32, 1803–1805 (1985). doi:10.1109/TNS.1985.4333729

    Article  ADS  Google Scholar 

  • X. Li, I. Roth, M. Temerin, J.R. Wygant, M.K. Hudson, J.B. Blake, Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 20(22), 2423–2426 (1993). doi:10.1029/93GL02701

    Article  ADS  Google Scholar 

  • X. Li, D.N. Baker, S.G. Kanekal, M. Looper, M. Temerin, Long term measurements of radiation belts by SAMPEX and their variations. Geophys. Res. Lett. 28(20), 3827–3830 (2001). doi:10.1029/2001GL013586

    Article  ADS  Google Scholar 

  • J. Lindhard, M. Scharff, H.E. Schiøtt, Range concepts and heavy ion ranges (Notes on atomic collisions II). Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33, 14 (1963)

    Google Scholar 

  • D. Lowenstein, A. Rusek, Technical developments at the NASA space radiation laboratory. Radiat. Environ. Biophys. 46(2), 91–94 (2007). doi:10.1007/s00411-006-0084-x

    Article  Google Scholar 

  • L.R. Lyons, R.M. Thorne, Equilibrium structure of radiation belt electrons. J. Geophys. Res. 78(13), 2142–2149 (1973). doi:10.1029/JA078i013p02142

    Article  ADS  Google Scholar 

  • E.A. MacDonald, M.F. Thomsen, H.O. Funsten, Background in channel electron multiplier detectors due to penetrating radiation in space. IEEE Trans. Nucl. Sci. 53(3), 1593–1598 (2006). doi:10.1109/TNS.2006.874497

    Article  ADS  Google Scholar 

  • E.A. MacDonald, M.H. Denton, M.F. Thomsen, S.P. Gary, Superposed epoch analysis of a whistler instability criterion at geosynchronous orbit during geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 70(14), 1789–1796 (2008). doi:10.1016/j.jastp.2008.03.021

    Article  ADS  Google Scholar 

  • E.A. MacDonald, H.O. Funsten, E.E. Dors, M.F. Thomsen, P. Janzen, R.M. Skoug, G.D. Reeves, J.T. Steinberg, R. Harper, D. Young, J.-M. Jahn, D. Reisenfeld, New magnetospheric ion composition measurement techniques, in Future Perspectives of Space Plasma and Particle Instrumentation and International Collaborations: Proceedings of the International Conference. AIP Conf. Proc., vol. 1144, (2009), pp. 168–172

    Google Scholar 

  • E.A. MacDonald, L.W. Blum, S.P. Gary, M.F. Thomsen, M.H. Denton, High speed stream driven inferences of global wave distributions at geosynchronous orbit; relevance to radiation belt dynamics. Proc. R. Soc. A 466(2123), 3351–3362 (2010). doi:10.1098/rspa.2010.0076

    Article  ADS  Google Scholar 

  • D.J. McComas, J.E. Nordholt, S.J. Bame, B.L. Barraclough, J.T. Gosling, Linear electric field mass analysis: a technique for three-dimensional high mass resolution space plasma composition measurements. Proc. Natl. Acad. Sci. USA 87(15), 5925–5929 (1990). doi:10.1073/pnas.87.15.5925

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, C.J. Pollock, H.O. Funsten, S. Ritzau, G. Gloeckler, Ultra-thin (∼10 nm) carbon foils in space instrumentation. Rev. Sci. Instrum. 75(11), 4863–4870 (2004). doi:10.1063/1.1809265

    Article  ADS  Google Scholar 

  • N.P. Meredith, R.M. Thorne, R.B. Horne, D. Summers, B.J. Fraser, R.R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108(A6), 1250 (2003). doi:10.1029/2002JA009700

    Article  Google Scholar 

  • M. Nosé, A. Ieda, S.P. Christon, Geotail observations of plasma sheet ion composition over 16 years: on variations of average plasma ion mass and O+ triggering substorm model. J. Geophys. Res. 114, A07223 (2009). doi:10.1029/2009JA014203

    ADS  Google Scholar 

  • T. Obara, T. Nagatsuma, M. Den, Y. Miyoshi, A. Morioka, Main-phase creation of ‘seed’ electrons in the outer radiation belt. Earth Planets Space 52(1), 41–47 (2000)

    ADS  Google Scholar 

  • G.S. Oehrlein, R.J. Phaneuf, D.B. Graves, Plasma-polymer interactions: a review of progress in understanding polymer resist mask durability during plasma etching for nanoscale fabrication. J. Vac. Sci. Technol. 29(1), 010801 (2011). doi:10.1116/1.3532949

    Article  Google Scholar 

  • T.P. O’Brien, M.B. Moldwin, Empirical plasmapause models from magnetic indices. Geophys. Res. Lett. 30(4), 1 (2003). doi:10.1029/2002GL016007

    Google Scholar 

  • T.I. Pulkkinen, N.A. Tsyganenko, R.H.W. Friedel (eds.), The Inner Magnetosphere: Physics and Modeling (Am. Geophys. Union, Washington, 2005)

    Google Scholar 

  • G.D. Reeves, Relativistic electrons and magnetic storms: 1992–1995. Geophys. Res. Lett. 25(11), 1817–1820 (1998). doi:10.1029/98GL01398

    Article  ADS  Google Scholar 

  • G.D. Reeves, K.L. McAdams, R.H.W. Friedel, T.P. O’Brien, Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30(10), 1529–1532 (2003). doi:10.1029/2002gl016513

    Article  ADS  Google Scholar 

  • G.D. Reeves, Radiation belt storm probes: the next generation of space weather forecasting. Space Weather 5, 11 (2007). doi:10.1029/2007sw000341

    Article  Google Scholar 

  • G.D. Reeves, A.A. Chan, C. Rodger, New directions for radiation belt research. Space Weather 7, S07004 (2009). doi:10.1029/2008sw000436

    Article  ADS  Google Scholar 

  • G.D. Reeves, Y. Chen, G.S. Cunningham, R.W.H. Friedel, M.G. Henderson, V.K. Jordanova, J. Koller, S.K. Morley, M.F. Thomsen, S. Zaharia, Dynamic radiation environment assimilation model: DREAM. Space Weather 10, S03006 (2012). doi:10.1029/2011sw000729

    Article  ADS  Google Scholar 

  • S.M. Ritzau, R.A. Baragiola, Electron emission from carbon foils induced by keV ions. Phys. Rev. B 58(5), 2529–2538 (1998). doi:10.1103/PhysRevB.58.2529

    Article  ADS  Google Scholar 

  • J.G. Roederer, On the adiabatic motion of energetic particles in a model magnetosphere. J. Geophys. Res. 72(3), 981–992 (1967). doi:10.1029/JZ072i003p00981

    Article  ADS  Google Scholar 

  • G. Santina, P. Nieminen, H. Evansa, E. Daly, F. Lei, P. Truscott, C. Dyer, B. Quaghebeur, D. Heynderickx, New Geant4 based simulation tools for space radiation shielding and effects analysis. Nucl. Phys. B, Proc. Suppl. 125, 69–74 (2003). doi:10.1016/S0920-5632(03)90968-6

    Article  ADS  Google Scholar 

  • D.M. Sawyer, J.I. Vette, AP-8 trapped proton environment for solar maximum and solar minimum. NASA STI/Recon Tech. Rep. 77, 18983 (1976)

    ADS  Google Scholar 

  • M. Schulz, L.J. Lanzerotti, Particle Diffusion in the Radiation Belts (Springer, New York, 1974)

    Book  Google Scholar 

  • N. Sckopke, A general relation between the energy of trapped particles and the disturbance field near the earth. J. Geophys. Res. 71(13), 3125–3130 (1966). doi:10.1029/JZ071i013p03125

    Article  ADS  Google Scholar 

  • H. Seiler, Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 54(11), R1–R18 (1983). doi:10.1063/1.332840

    Article  ADS  Google Scholar 

  • R.S. Selesnick, J.B. Blake, Dynamics of the outer radiation belt. Geophys. Res. Lett. 24(11), 1347–1350 (1997). doi:10.1029/97GL51409

    Article  ADS  Google Scholar 

  • R.S. Selesnick, M.D. Looper, R.A. Mewaldt, A theoretical model of the inner proton radiation belt. Space Weather 5, S04003 (2007). doi:10.1029/2006SW000275

    Article  ADS  Google Scholar 

  • M.L. Spasojevic, L.W. Blum, E.A. MacDonald, S.A. Fuselier, D.I. Golden, Correspondence between a plasma-based EMIC wave proxy and subauroral proton precipitation. Geophys. Res. Lett. 38, L23102 (2011). doi:10.1029/2011GL049735

    Article  ADS  Google Scholar 

  • A.L. Stancik, E.B. Brauns, A simple asymmetric lineshape for fitting infrared absorption spectra. Vib. Spectrosc. 47, 66–69 (2008). doi:10.1016/j.vibspec.2008.02.009

    Article  Google Scholar 

  • D. Summers, R.M. Thorne, F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 103(A9), 20487–20500 (1998). doi:10.1029/98JA01740

    Article  ADS  Google Scholar 

  • M. Taylor, R.H.W. Friedel, G.D. Reeves, M.W. Dunlop, T.A. Fritz, P.W. Daly, A. Balogh, Multisatellite measurements of electron phase space density gradients in the earth’s inner and outer magnetosphere. J. Geophys. Res. 109, A05220 (2004). doi:10.1029/2003ja010294

    ADS  Google Scholar 

  • S. Väyrynen, J. Räisänen, P. Tikkanen, I. Kassamakov, E. Tuominen, Effects of activation by proton irradiation on silicon particle detector electric characteristics. J. Appl. Phys. 106(2), 024908 (2009). doi:10.1063/1.3168436

    Article  ADS  Google Scholar 

  • M.F. Thomsen, M.H. Denton, V.K. Jordanova, L. Chen, R.M. Thorne, Free energy to drive equatorial magnetosonic wave instability at geosynchronous orbit. J. Geophys. Res. 116, A08220 (2011). doi:10.1029/2011JA016644

    Article  ADS  Google Scholar 

  • D.L. Turner, Y. Shprits, M. Hartinger, V. Angelopoulos, Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat. Phys. 8, 208–212 (2012). doi:10.1038/NPHYS2185

    Article  Google Scholar 

  • C.G.H. Walker, M.M. El-Gomati, A.M.D. Assa’d, M. Zadrazil, The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250–5000 eV: a theory/experiment comparison. Scanning 30(5), 365–380 (2008). doi:10.1002/sca.20124

    Article  Google Scholar 

  • S.R. Walther, K.N. Leong, W.B. Kunkel, Characteristics of a compact microwave ion source. Rev. Sci. Instrum. 57, 1531–1535 (1986). doi:10.1063/1.1139197

    Article  ADS  Google Scholar 

  • S.R. Walther, K.N. Leong, K.W. Ehlers, W.B. Kunkel, Generation of oxygen, carbon, and metallic ion beams by a compact microwave ion source. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 21, 215–217 (1987). doi:10.1016/0168-583X(87)90830-5

    Article  ADS  Google Scholar 

  • M. Wüest, Time-of-flight ion composition measurement technique for space plasmas, in Measurement Techniques in Space Plasmas: Particles, ed. by F. Pfaff, E. Borovsky, T. Young. Geophys. Monogr. Ser., vol. 102 (AGU, Washington, 1998), pp. 141–155. doi:10.1029/GM102p0141

    Chapter  Google Scholar 

  • D.T. Young, S.J. Bame, M.F. Thomsen, R.H. Martin, J.L. Burch, J.A. Marshall, B. Reinhard, 2-Pi-radian field-of-view toroidal electrostatic analyzer. Rev. Sci. Instrum. 59(5), 743–751 (1988). doi:10.1063/1.1139821

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Funsten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Funsten, H.O. et al. (2013). Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission. In: Fox, N., Burch, J.L. (eds) The Van Allen Probes Mission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7433-4_13

Download citation

Publish with us

Policies and ethics