Space Science Reviews

, Volume 173, Issue 1–4, pp 369–431 | Cite as

Observational Signatures of Particle Acceleration in Supernova Remnants

  • E. A. HelderEmail author
  • J. Vink
  • A. M. Bykov
  • Y. Ohira
  • J. C. Raymond
  • R. Terrier


We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these observations tell us about the acceleration processes by high Mach number shock fronts. We discuss the shock modification by cosmic rays, the shape and maximum energy of the cosmic-ray spectrum and the total energy budget of cosmic rays in and surrounding supernova remnants. Additionally, we discuss problems with supernova remnants as main sources of Galactic cosmic rays, as well as alternative sources.


Supernova remnants Cosmic rays Acceleration of particles 



We thank the anonymous referee for carefully reading the manuscript. The authors thank the ISSI in Bern for their hospitality and for organizing the workshop that resulted in this chapter. This work has been supported by SAO grant GO0-11072X (E.A.H.). A.M.B. was supported in part by the Russian government grant 11.G34.31.0001 to Sankt-Petersburg State Politechnical University, and also by the RAS Presidium Program and by the RFBR grant 11-02-12082. He performed the simulations at the Joint Supercomputing Center (JSCC RAS) and the Supercomputing Center at Ioffe Institute, St. Petersburg.


  1. A.A. Abdo (Fermi LAT Collaboration), Observations of the young supernova remnant RX J1713.7-3946 with the Fermi large area telescope (2011). arXiv:1103.5727
  2. A.A. Abdo et al., Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys. J. Lett. 706, 1–6 (2009). arXiv:0910.0908 ADSCrossRefGoogle Scholar
  3. A.A. Abdo et al., Fermi large area telescope observations of the supernova remnant W28 (G6.4-0.1). Astrophys. J. 718, 348–356 (2010a) ADSCrossRefGoogle Scholar
  4. A.A. Abdo et al., Fermi-Lat discovery of GeV gamma-ray emission from the young supernova remnant Cassiopeia A. Astrophys. J. Lett. 710, L92–L97 (2010b). arXiv:1001.1419 ADSCrossRefGoogle Scholar
  5. A.A. Abdo et al., Fermi-LAT study of gamma-ray emission in the direction of supernova remnant W49B. Astrophys. J. 722, 1303–1311 (2010c) ADSCrossRefGoogle Scholar
  6. A.A. Abdo et al., Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327, 1103 (2010d) ADSCrossRefGoogle Scholar
  7. A.A. Abdo et al., Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys. J. 712, 459–468 (2010e). arXiv:1002.2198 ADSCrossRefGoogle Scholar
  8. A. Abramowski, F. Acero, F. Aharonian et al. (HESS Collaboration), Discovery of extended VHE∖gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1 (2011a). arXiv:1111.2043
  9. A. Abramowski, F. Acero, F. Aharonian et al. (HESS Collaboration), A new SNR with TeV shell-type morphology: HESS J1731-347. Astron. Astrophys. 531, A81 (2011b). arXiv:1105.3206 ADSCrossRefGoogle Scholar
  10. A. Abramowski, F. Acero, F. Aharonian et al. (HESS Collaboration), Revisiting the Westerlund 2 field with the HESS telescope array. Astron. Astrophys. 525, A46 (2011c). arXiv:1009.3012 ADSCrossRefGoogle Scholar
  11. V.A. Acciari, E. Aliu, T. Arlen, T. Aune et al., Observation of extended very high energy emission from the supernova remnant IC 443 with VERITAS. Astrophys. J. Lett. 698, 133–137 (2009). arXiv:0905.3291 ADSCrossRefGoogle Scholar
  12. V.A. Acciari et al., Observations of the shell-type supernova remnant Cassiopeia A at TeV energies with VERITAS. Astrophys. J. 714, 163–169 (2010). arXiv:1002.2974 ADSCrossRefGoogle Scholar
  13. V.A. Acciari, E. Aliu, T. Arlen, T. Aune et al., Discovery of TeV gamma-ray emission from Tycho’s supernova remnant. Astrophys. J. Lett. 730, 20L (2011). arXiv:1102.3871 ADSCrossRefGoogle Scholar
  14. F. Acero, J. Ballet, A. Decourchelle, The gas density around SN 1006. Astron. Astrophys. 475, 883–890 (2007). arXiv:0709.0956 ADSCrossRefGoogle Scholar
  15. F. Acero, F. Aharonian, A.G. Akhperjanian, G. Anton et al., Detection of gamma rays from a starburst galaxy. Science 326, 1080–1082 (2009a). arXiv:0909.4651 ADSCrossRefGoogle Scholar
  16. F. Acero, J. Ballet, A. Decourchelle, M. Lemoine-Goumard et al., A joint spectro-imaging analysis of the XMM-Newton and HESS observations of the supernova remnant RX J1713.7-3946. Astron. Astrophys. 505, 157–167 (2009b). arXiv:0906.1073 ADSCrossRefGoogle Scholar
  17. F. Acero et al., First detection of VHE γ-rays from SN 1006 by HESS. Astron. Astrophys. 516, A62 (2010) ADSCrossRefGoogle Scholar
  18. A. Achterberg, R.D. Blandford, S.P. Reynolds, Evidence for enhanced MHD turbulence outside sharp-rimmed supernova remnants. Astron. Astrophys. 281, 220–230 (1994) ADSGoogle Scholar
  19. M. Ackermann, M. Ajello, A. Allafort et al., A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334, 1103–1107 (2011) ADSCrossRefGoogle Scholar
  20. F. Aharonian et al. (HESS Collaboration), H.E.S.S. observations of the supernova remnant RX J0852.0-4622: shell-type morphology and spectrum of a widely extended VHE gamma-ray source (2006). arXiv:astro-ph/0612495
  21. F.A. Aharonian, A.M. Atoyan, On the emissivity of π 0-decay gamma radiation in the vicinity of accelerators of galactic cosmic rays. Astron. Astrophys. 309, 917–928 (1996) ADSGoogle Scholar
  22. F.A. Aharonian, A.M. Atoyan, On the origin of TeV radiation of SN 1006. Astron. Astrophys. 351, 330–340 (1999) ADSGoogle Scholar
  23. F.A. Aharonian, A.M. Atoyan, Broad-band diffuse gamma ray emission of the galactic disk. Astron. Astrophys. 362, 937–952 (2000). arXiv:astro-ph/0009009 ADSGoogle Scholar
  24. F. Aharonian, A.G. Akhperjanian, J. Barrio et al., Evidence for TeV gamma ray emission from Cassiopeia A. Astron. Astrophys. 370, 112–120 (2001) ADSCrossRefGoogle Scholar
  25. F.A. Aharonian et al., High-energy particle acceleration in the shell of a supernova remnant. Nature 432, 75–77 (2004). arXiv:astro-ph/0411533 ADSCrossRefGoogle Scholar
  26. F. Aharonian et al., Detection of TeV γ-ray emission from the shell-type supernova remnant RX J0852.0-4622 with HESS. Astron. Astrophys. 437, L7–L10 (2005) ADSCrossRefGoogle Scholar
  27. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Discovery of very-high-energy γ-rays from the galactic centre ridge. Nature 439, 695–698 (2006). arXiv:astro-ph/0603021 ADSCrossRefGoogle Scholar
  28. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Detection of extended very-high-energy γ-ray emission towards the young stellar cluster Westerlund 2. Astron. Astrophys. 467, 1075–1080 (2007). arXiv:astro-ph/0703427 ADSCrossRefGoogle Scholar
  29. F. Aharonian, A.G. Akhperjanian, U. Barres de Almeida, A.R. Bazer-Bachi et al., Discovery of a VHE gamma-ray source coincident with the supernova remnant CTB 37A. Astron. Astrophys. 490, 685–693 (2008a). arXiv:0803.0702 ADSCrossRefGoogle Scholar
  30. F. Aharonian, A.G. Akhperjanian, U. Barres de Almeida, A.R. Bazer-Bachi et al., Exploring a SNR/molecular cloud association within HESS J1745-303. Astron. Astrophys. 483, 509–517 (2008b). arXiv:0803.2844 ADSCrossRefGoogle Scholar
  31. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, B. Behera et al., Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field. Astron. Astrophys. 481, 401–410 (2008c). arXiv:0801.3555 ADSCrossRefGoogle Scholar
  32. F. Aharonian et al., Discovery of gamma-ray emission from the shell-type supernova remnant RCW 86 with Hess. Astrophys. J. 692, 1500–1505 (2009) ADSCrossRefGoogle Scholar
  33. F. Aharonian, A. Bykov, E. Parizot, V. Ptuskin et al., Cosmic rays in galactic and extragalactic magnetic fields. Space Sci. Rev. 268 (2011). arXiv:1105.0131
  34. J. Albert et al., Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys. J. Lett. 664, L87–L90 (2007a). arXiv:0705.3119 ADSCrossRefGoogle Scholar
  35. J. Albert et al., Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron. Astrophys. 474, 937–940 (2007b). arXiv:0706.4065 ADSCrossRefGoogle Scholar
  36. G.E. Allen et al., Evidence of X-ray synchrotron emission from electrons accelerated to 40 TeV in the supernova remnant Cassiopeia A. Astrophys. J. Lett. 487, L97–L100 (1997) ADSCrossRefGoogle Scholar
  37. G.E. Allen, E.V. Gotthelf, R. Petre, Evidence of 10-TeV to 100-TeV electrons in supernova remnants, in The Proceedings of the 26th International Cosmic Ray Conference (1999). arXiv:astro-ph/9908209 Google Scholar
  38. G.E. Allen, J.C. Houck, S.J. Sturner, Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. Astrophys. J. 683, 773–785 (2008). arXiv:0807.1702 ADSCrossRefGoogle Scholar
  39. T. Amano, K. Torii, T. Hayakawa, Y. Fukui, Stochastic acceleration of cosmic rays in the central molecular zone of the galaxy (2011). arXiv:1110.3140
  40. E. Amato, P. Blasi, Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon. Not. R. Astron. Soc. 371, 1251–1258 (2006). arXiv:astro-ph/0606592 ADSCrossRefGoogle Scholar
  41. B. Aschenbach, R. Egger, J. Trümper, Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary. Nature 373, 587–590 (1995) ADSCrossRefGoogle Scholar
  42. A.I. Asvarov, O.H. Guseinov, F.K. Kasumov, V.A. Dogel, The hard X-ray emission of the young supernova remnants. Astron. Astrophys. 229, 196–200 (1990) ADSGoogle Scholar
  43. W.B. Atwood, A.A. Abdo, M. Ackermann, W. Althouse et al., The large area telescope on the Fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071–1102 (2009). arXiv:0902.1089 ADSCrossRefGoogle Scholar
  44. W.I. Axford, The origins of high-energy cosmic rays. Astrophys. J. Suppl. Ser. 90, 937–944 (1994) ADSCrossRefGoogle Scholar
  45. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference, vol. 11 (1977), pp. 132–137 Google Scholar
  46. W. Baade, F. Zwicky, Cosmic rays from super-novae. Proc. Natl. Acad. Sci. USA 20, 259–263 (1934) ADSCrossRefGoogle Scholar
  47. J.W.M. Baars, R. Genzel, I.I.K. Pauliny-Toth, A. Witzel, The absolute spectrum of CAS A—an accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977) ADSGoogle Scholar
  48. C. Badenes, K.J. Borkowski, J.P. Hughes, U. Hwang et al., Constraints on the physics of type Ia supernovae from the X-ray spectrum of the Tycho supernova remnant. Astrophys. J. 645, 1373–1391 (2006). arXiv:astro-ph/0511140 ADSCrossRefGoogle Scholar
  49. F.K. Baganoff, Y. Maeda, M. Morris, M.W. Bautz et al., Chandra X-ray spectroscopic imaging of Sagittarius A* and the central parsec of the galaxy. Astrophys. J. 591, 891–915 (2003). arXiv:astro-ph/0102151 ADSCrossRefGoogle Scholar
  50. J. Ballet, X-ray synchrotron emission from supernova remnants. Adv. Space Res. 37, 1902–1908 (2006). arXiv:astro-ph/0503309 ADSCrossRefGoogle Scholar
  51. A. Bamba, K. Koyama, H. Tomida, Discovery of non-thermal X-rays from the shell of RCW 86. Publ. Astron. Soc. Jpn. 52, 1157–1163 (2000) ADSGoogle Scholar
  52. A. Bamba, M. Ueno, H. Nakajima, K. Koyama, Thermal and nonthermal X-rays from the large Magellanic cloud superbubble 30 doradus C. Astrophys. J. 602, 257–263 (2004) ADSCrossRefGoogle Scholar
  53. A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa et al., A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys. J. 621, 793–802 (2005). arXiv:astro-ph/0411326 ADSCrossRefGoogle Scholar
  54. R. Bandiera, O. Petruk, Analytic solutions for the evolution of radiative supernova remnants. Astron. Astrophys. 419, 419–423 (2004). arXiv:astro-ph/0402598 ADSCrossRefGoogle Scholar
  55. R. Barbon, F. Ciatti, L. Rosino, Photometric properties of type II supernovae. Astron. Astrophys. 72, 287–292 (1979) ADSGoogle Scholar
  56. N. Bartel, Supernova VLBI, in Approaching Micro-arcsecond Resolution with VSOP-2: Astrophysics and Technologies, ed. by Y. Hagiwara, E. Fomalont, M. Tsuboi, M. Yasuhiro. Astronomical Society of the Pacific Conference Series, vol. 402 (2009), p. 243 Google Scholar
  57. J.K. Becker, J.H. Black, M. Safarzadeh, F. Schuppan, Tracing the sources of cosmic rays with molecular ions. Astrophys. J. Lett. 739, L43 (2011). arXiv:1106.4740 ADSCrossRefGoogle Scholar
  58. G. Bélanger, A. Goldwurm, M. Renaud, R. Terrier et al., A persistent high-energy flux from the heart of the Milky Way: INTEGRAL’s view of the galactic center. Astrophys. J. 636, 275–289 (2006). arXiv:astro-ph/0508128 ADSCrossRefGoogle Scholar
  59. A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978) ADSGoogle Scholar
  60. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004) ADSCrossRefGoogle Scholar
  61. A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. 358, 181–187 (2005) ADSCrossRefGoogle Scholar
  62. A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001) ADSCrossRefGoogle Scholar
  63. E.G. Berezhko, D.C. Ellison, A simple model of nonlinear diffusive shock acceleration. Astrophys. J. 526, 385–399 (1999) ADSCrossRefGoogle Scholar
  64. E.G. Berezhko, H.J. Völk, Hadronic versus leptonic origin of the gamma-ray emission from supernova remnant RX J1713.7-3946. Astron. Astrophys. 492, 695–701 (2008). arXiv:0810.0988 ADSCrossRefGoogle Scholar
  65. E.G. Berezhko, H.J. Völk, Nonthermal and thermal emission from the supernova remnant RX J1713.7-3946. Astron. Astrophys. 511, A34 (2010). arXiv:0910.2094 ADSCrossRefGoogle Scholar
  66. E.G. Berezhko, L.T. Ksenofontov, V.S. Ptuskin, V.N. Zirakashvili et al., Cosmic ray production in supernova remnants including reacceleration: the secondary to primary ratio. Astron. Astrophys. 410, 189–198 (2003a) ADSCrossRefGoogle Scholar
  67. E.G. Berezhko, L.T. Ksenofontov, H.J. Völk, Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006. Astron. Astrophys. 412, L11–L14 (2003b) ADSCrossRefGoogle Scholar
  68. W.R. Binns, M.E. Wiedenbeck, M. Arnould, A.C. Cummings et al., OB associations, Wolf Rayet stars, and the origin of galactic cosmic rays. Space Sci. Rev. 130, 439–449 (2007). arXiv:0707.4645 ADSCrossRefGoogle Scholar
  69. G.S. Bisnovatyi-Kogan, S.A. Silich, Shock-wave propagation in the nonuniform interstellar medium. Rev. Mod. Phys. 67, 661–712 (1995) ADSCrossRefGoogle Scholar
  70. J. Bland-Hawthorn, M. Cohen, The large-scale bipolar wind in the galactic center. Astrophys. J. 582, 246–256 (2003). arXiv:astro-ph/0208553 ADSCrossRefGoogle Scholar
  71. R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987) ADSCrossRefGoogle Scholar
  72. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, L29–L32 (1978) ADSCrossRefGoogle Scholar
  73. P. Blasi, S. Gabici, G. Vannoni, On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 361, 907–918 (2005). arXiv:astro-ph/0505351 ADSCrossRefGoogle Scholar
  74. J.A.M. Bleeker et al., Cassiopeia A: on the origin of the hard X-ray continuum and the implication of the observed O VIII Ly-α/Ly-β distribution. Astron. Astrophys. 365, L225–L230 (2001) ADSCrossRefGoogle Scholar
  75. J.M. Blondin, D.C. Ellison, Rayleigh-Taylor instabilities in young supernova remnants undergoing efficient particle acceleration. Astrophys. J. 560, 244–253 (2001). arXiv:astro-ph/0104024 ADSCrossRefGoogle Scholar
  76. K.J. Borkowski, J. Rho, S.P. Reynolds, K.K. Dyer, Thermal and nonthermal X-ray emission in supernova remnant RCW 86. Astrophys. J. 550, 334–345 (2001) ADSCrossRefGoogle Scholar
  77. K.J. Borkowski, S.P. Reynolds, D.A. Green, U. Hwang et al., Radioactive scandium in the youngest galactic supernova remnant G1.9+0.3. Astrophys. J. Lett. 724, L161–L165 (2010). arXiv:1006.3552 ADSCrossRefGoogle Scholar
  78. A. Boulares, D.P. Cox, Application of cosmic-ray shock theories to the Cygnus loop—an alternative model. Astrophys. J. 333, 198–218 (1988) ADSCrossRefGoogle Scholar
  79. F. Brun, M. de Naurois, W. Hofmann, S. Carrigan et al., Discovery of VHE gamma-ray emission from the W49 region with H.E.S.S (2011). arXiv:1104.5003
  80. Y.M. Butt, T.A. Porter, B. Katz, E. Waxman, X-ray hotspot flares and implications for cosmic ray acceleration and magnetic field amplification in supernova remnants. Mon. Not. R. Astron. Soc. 386, L20–L22 (2008). arXiv:0801.4954 ADSCrossRefGoogle Scholar
  81. A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001) ADSCrossRefGoogle Scholar
  82. A.M. Bykov, X-ray line emission from supernova ejecta fragments. Astron. Astrophys. 390, 327–335 (2002). arXiv:astro-ph/0205225 ADSCrossRefGoogle Scholar
  83. A.M. Bykov, Faint hard X-ray sources in the galactic center region: supernova ejecta fragments population. Astron. Astrophys. 410, L5–L8 (2003). arXiv:astro-ph/0309234 ADSCrossRefGoogle Scholar
  84. A.M. Bykov, Shocks and particle acceleration in SNRs: theoretical aspects. Adv. Space Res. 33, 366–375 (2004) ADSCrossRefGoogle Scholar
  85. A.M. Bykov, G.D. Fleishman, On non-thermal particle generation in superbubbles. Mon. Not. R. Astron. Soc. 255, 269–275 (1992) ADSGoogle Scholar
  86. A.M. Bykov, I.N. Toptygin, A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron. Lett. 27, 625–633 (2001) ADSCrossRefGoogle Scholar
  87. A.M. Bykov, Y.A. Uvarov, Electron kinetics in collisionless shock waves. JETP Lett. 88, 465–475 (1999) Google Scholar
  88. A.M. Bykov, A.M. Krassilchtchikov, Y.A. Uvarov, H. Bloemen et al., Isolated X-ray-infrared sources in the region of interaction of the supernova remnant IC 443 with a molecular cloud. Astrophys. J. 676, 1050–1063 (2008a). arXiv:0801.1255 ADSCrossRefGoogle Scholar
  89. A.M. Bykov, Y.A. Uvarov, D.C. Ellison, Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants. Astrophys. J. Lett. 689, L133–L136 (2008b). arXiv:0811.2498 ADSCrossRefGoogle Scholar
  90. A.M. Bykov, Y.A. Uvarov, J.B.G.M. Bloemen, J.W. den Herder et al., A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. 399, 1119–1125 (2009). arXiv:0907.2521 ADSCrossRefGoogle Scholar
  91. A.M. Bykov, D.C. Ellison, S.M. Osipov, G.G. Pavlov et al., X-ray stripes in Tycho’s supernova remnant: synchrotron footprints of a nonlinear cosmic-ray-driven instability. Astrophys. J. Lett. 735, L40 (2011a). arXiv:1106.3441 ADSCrossRefGoogle Scholar
  92. A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52 (2011b). arXiv:1010.0408 ADSCrossRefGoogle Scholar
  93. R. Capelli, R.S. Warwick, D. Porquet, S. Gillessen et al., Fe Kα line emission from the arches cluster region—evidence for ongoing particle bombardment? Astron. Astrophys. 530, A38 (2011). arXiv:1104.2039 ADSCrossRefGoogle Scholar
  94. D. Caprioli, E. Amato, P. Blasi, The contribution of supernova remnants to the galactic cosmic ray spectrum. Astropart. Phys. 33, 160–168 (2010). arXiv:0912.2964 ADSCrossRefGoogle Scholar
  95. A.K. Carlton, K.J. Borkowski, S.P. Reynolds, U. Hwang et al., Expansion of the youngest galactic supernova remnant G1.9+0.3 (2011). arXiv:1106.4498
  96. G. Cassam-Chenaï, J.P. Hughes, J. Ballet, A. Decourchelle, The blast wave of Tycho’s supernova remnant. Astrophys. J. 665, 315–340 (2007). arXiv:astro-ph/0703239 ADSCrossRefGoogle Scholar
  97. G. Cassam-Chenaï, J.P. Hughes, E.M. Reynoso, C. Badenes et al., Morphological evidence for azimuthal variations of the cosmic-ray ion acceleration at the blast wave of SN 1006. Astrophys. J. 680, 1180–1197 (2008). arXiv:0803.0805 ADSCrossRefGoogle Scholar
  98. D. Castro, P. Slane, Fermi large area telescope observations of supernova remnants interacting with molecular clouds. Astrophys. J. 717, 372–378 (2010). arXiv:1002.2738 ADSCrossRefGoogle Scholar
  99. C. Ceccarelli, A. Bacmann, A. Boogert, E. Caux et al., Herschel spectral surveys of star-forming regions. Overview of the 555–636 GHz range. Astron. Astrophys. 521, L22 (2010) ADSCrossRefGoogle Scholar
  100. C. Ceccarelli, P. Hily-Blant, T. Montmerle, G. Dubus et al., Supernova-enhanced cosmic-ray ionization and induced chemistry in a molecular cloud of W51C. Astrophys. J. Lett. 740, L4 (2011). arXiv:1108.3600 ADSCrossRefGoogle Scholar
  101. K.S. Cheng, D.O. Chernyshov, V.A. Dogiel, C.M. Ko et al., Origin of the Fermi bubble. Astrophys. J. Lett. 731, L17 (2011). arXiv:1103.1002 ADSCrossRefGoogle Scholar
  102. R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982a) ADSCrossRefGoogle Scholar
  103. R.A. Chevalier, The radio and X-ray emission from type II supernovae. Astrophys. J. 259, 302–310 (1982b) ADSCrossRefGoogle Scholar
  104. R.A. Chevalier, Blast waves with cosmic-ray pressure. Astrophys. J. 272, 765–772 (1983) ADSCrossRefGoogle Scholar
  105. R.A. Chevalier, J. Oishi, Cassiopeia A and its clumpy presupernova wind. Astrophys. J. Lett. 593, L23–L26 (2003) ADSCrossRefGoogle Scholar
  106. R.A. Chevalier, J.C. Raymond, Optical emission from a fast shock wave—the remnants of Tycho’s supernova and SN 1006. Astrophys. J. Lett. 225, L27–L30 (1978) ADSCrossRefGoogle Scholar
  107. R.A. Chevalier, R.P. Kirshner, J.C. Raymond, The optical emission from a fast shock wave with application to supernova remnants. Astrophys. J. 235, 186–195 (1980) ADSCrossRefGoogle Scholar
  108. D.P. Cox, R.L. Shelton, W. Maciejewski, R.K. Smith et al., Modeling W44 as a supernova remnant in a density gradient with a partially formed dense shell and thermal conduction in the hot interior. I. The analytical model. Astrophys. J. 524, 179–191 (1999) ADSCrossRefGoogle Scholar
  109. R.M. Crocker, F. Aharonian, Fermi bubbles: giant, multibillion-year-old reservoirs of galactic center cosmic rays. Phys. Rev. Lett. 106(10), 101102 (2011). arXiv:1008.2658 ADSCrossRefGoogle Scholar
  110. R.M. Crocker, D.I. Jones, F. Melia, J. Ott et al., A lower limit of 50 microgauss for the magnetic field near the galactic centre. Nature 463, 65–67 (2010). arXiv:1001.1275 ADSCrossRefGoogle Scholar
  111. R.M. Crocker, D.I. Jones, F. Aharonian, C.J. Law et al., γ-rays and the far-infrared-radio continuum correlation reveal a powerful galactic centre wind. Mon. Not. R. Astron. Soc. 411, L11–L15 (2011). arXiv:1009.4340 ADSCrossRefGoogle Scholar
  112. CTA Consortium T, Design concepts for the Cherenkov telescope array (2010). arXiv:1008.3703
  113. A. Dalgarno, Interstellar chemistry special feature: the galactic cosmic ray ionization rate. Proc. Natl. Acad. Sci. USA 1031, 12 269–12 273 (2006) Google Scholar
  114. A.P.L.S. de Laat, Balmer-dominated shocks and the effects of cosmic-ray acceleration. Master’s thesis, Utrecht University (2011) Google Scholar
  115. A. Decourchelle, D.C. Ellison, J. Ballet, Thermal X-ray emission and cosmic-ray production in young supernova remnants. Astrophys. J. Lett. 543, L57–L60 (2000). arXiv:astro-ph/0008344 ADSCrossRefGoogle Scholar
  116. T. Delaney, L. Rudnick, The first measurement of Cassiopeia A’s forward shock expansion rate. Astrophys. J. 589, 818 (2003) ADSCrossRefGoogle Scholar
  117. T. DeLaney, B. Koralesky, L. Rudnick, J.R. Dickel, Radio spectral index variations and physical conditions in Kepler’s supernova remnant. Astrophys. J. 580, 914–927 (2002). arXiv:astro-ph/0210355 ADSCrossRefGoogle Scholar
  118. T. DeLaney, L. Rudnick, R.A. Fesen, T.W. Jones et al., Kinematics of X-ray-emitting components in Cassiopeia A. Astrophys. J. 613, 343–348 (2004). arXiv:astro-ph/0406045 ADSCrossRefGoogle Scholar
  119. C.D. Dermer, Binary collision rates of relativistic thermal plasmas. II. Spectra. Astrophys. J. 307, 47–59 (1986) ADSCrossRefGoogle Scholar
  120. J.R. Dickel, D.K. Milne, Magnetic fields in supernova remnants. Aust. J. Phys. 29, 435–460 (1976) ADSCrossRefGoogle Scholar
  121. V. Dogiel, K.S. Cheng, D. Chernyshov, A. Bamba et al., Origin of 6.4 keV line emission from molecular clouds in the galactic center. Publ. Astron. Soc. Jpn. 61, 901 (2009) ADSGoogle Scholar
  122. B.T. Draine, C.F. McKee, Theory of interstellar shocks. Annu. Rev. Astron. Astrophys. 31, 373–432 (1993) ADSCrossRefGoogle Scholar
  123. L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983) ADSCrossRefGoogle Scholar
  124. L.O. Drury, Escaping the accelerator: how, when and in what numbers do cosmic rays get out of supernova remnants? Mon. Not. R. Astron. Soc. 415, 1807–1814 (2011). arXiv:1009.4799 ADSCrossRefGoogle Scholar
  125. L.O. Drury, J.H. Voelk, Hydromagnetic shock structure in the presence of cosmic rays. Astrophys. J. 248, 344–351 (1981) ADSCrossRefGoogle Scholar
  126. L.O. Drury, P. Duffy, J.G. Kirk, Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron. Astrophys. 309, 1002–1010 (1996). arXiv:astro-ph/9510066 ADSGoogle Scholar
  127. L. Drury, F.A. Aharonian, D. Malyshev, S. Gabici, On the plasma temperature in supernova remnants with cosmic-ray modified shocks. Astron. Astrophys. 496, 1–6 (2009). arXiv:0811.3566 ADSzbMATHCrossRefGoogle Scholar
  128. G. Dubner, E. Giacani, E. Reynoso, S. Parón, The molecular clouds in the environs of the supernova remnants G349.7+0.2 and G18.8+0.3. Astron. Astrophys. 426, 201–212 (2004) ADSCrossRefGoogle Scholar
  129. V.V. Dwarkadas, R.A. Chevalier, Interaction of type IA supernovae with their surroundings. Astrophys. J. 497, 807–823 (1998) ADSCrossRefGoogle Scholar
  130. D. Eichler, V. Usov, Particle acceleration and nonthermal radio emission in binaries of early-type stars. Astrophys. J. 402, 271–279 (1993) ADSCrossRefGoogle Scholar
  131. D.C. Ellison, A. Decourchelle, J. Ballet, Hydrodynamic simulation of supernova remnants including efficient particle acceleration. Astron. Astrophys. 413, 189–201 (2004). arXiv:astro-ph/0308308 ADSCrossRefGoogle Scholar
  132. D.C. Ellison, A. Decourchelle, J. Ballet, Nonlinear particle acceleration at reverse shocks in supernova remnants. Astron. Astrophys. 429, 569–580 (2005). arXiv:astro-ph/0409182 ADSCrossRefGoogle Scholar
  133. D.C. Ellison, D.J. Patnaude, P. Slane, J. Raymond, Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys. J. 712, 287–293 (2010). arXiv:1001.1932 ADSCrossRefGoogle Scholar
  134. K.A. Eriksen, J.P. Hughes, C. Badenes, R. Fesen et al., Evidence for particle acceleration to the knee of the cosmic ray spectrum in Tycho’s supernova remnant. Astrophys. J. Lett. 728, L28 (2011). arXiv:1101.1454 ADSCrossRefGoogle Scholar
  135. J.A. Esposito, S.D. Hunter, G. Kanbach, P. Sreekumar, EGRET observations of radio-bright supernova remnants. Astrophys. J. 461, 820 (1996) ADSCrossRefGoogle Scholar
  136. F. Favata et al., The broad-band X-ray spectrum of the Cas A supernova remnant as seen by the BeppoSAX observatory. Astron. Astrophys. 324, L49–L52 (1997) ADSGoogle Scholar
  137. G. Ferrand, A. Marcowith, On the shape of the spectrum of cosmic rays accelerated inside superbubbles. Astron. Astrophys. 510, A101 (2010). arXiv:0911.4457 ADSCrossRefGoogle Scholar
  138. K. Ferrière, Interstellar magnetic fields in the galactic center region. Astron. Astrophys. 505, 1183–1198 (2009). arXiv:0908.2037 ADSzbMATHCrossRefGoogle Scholar
  139. R.A. Fesen, M.C. Hammell, J. Morse, R.A. Chevalier et al., The expansion asymmetry and age of the Cassiopeia A supernova remnant. Astrophys. J. 645, 283–292 (2006). arXiv:astro-ph/0603371 ADSCrossRefGoogle Scholar
  140. A. Fiasson, K. Kosack, J. Skilton, Y. Gallant et al., Probing cosmic ray acceleration through molecular clouds in the vicinity of supernova remnant with H.E.S.S. Am. Ins. Phys. Conf. Ser. 1085, 361–363 (2008) ADSGoogle Scholar
  141. G.B. Field, D.W. Goldsmith, H.J. Habing, Cosmic-ray heating of the interstellar gas. Astrophys. J. Lett. 155, L149 (1969) ADSCrossRefGoogle Scholar
  142. A.V. Filippenko, Supernova 1987 K—type II in youth, type Ib in old age. Astron. J. 96, 1941–1948 (1988) ADSCrossRefGoogle Scholar
  143. A.V. Filippenko, Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997) ADSCrossRefGoogle Scholar
  144. D.A. Frail, W.M. Goss, E.M. Reynoso, E.B. Giacani et al., A survey for OH (1720 MHz) maser emission toward supernova remnants. Astron. J. 111, 1651–1659 (1996) ADSCrossRefGoogle Scholar
  145. C. Fransson, C.I. Björnsson, Radio emission and particle acceleration in SN 1993J. Astrophys. J. 509, 861–878 (1998). arXiv:astro-ph/9807030 ADSCrossRefGoogle Scholar
  146. Y. Fukui, Y. Moriguchi, K. Tamura, H. Yamamoto et al., Discovery of interacting molecular gas toward the TeV gamma-ray peak of the SNR G 347.3–0.5. Publ. Astron. Soc. Jpn. 55, L61–L64 (2003) ADSGoogle Scholar
  147. A. Furuzawa, D. Ueno, A. Hayato, M. Ozawa et al., Doppler-broadened iron X-ray lines from Tycho’s supernova remnant. Astrophys. J. Lett. 693, L61–L65 (2009). arXiv:0902.3049 ADSCrossRefGoogle Scholar
  148. S. Gabici, F.A. Aharonian, S. Casanova, Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon. Not. R. Astron. Soc. 396, 1629–1639 (2009). arXiv:0901.4549 ADSCrossRefGoogle Scholar
  149. R. Genzel, F. Eisenhauer, S. Gillessen, The galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010). arXiv:1006.0064 ADSCrossRefGoogle Scholar
  150. M. Gerin, M. de Luca, J.R. Goicoechea, E. Herbst et al., Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6-0.4 (W31C), W49N, and W51. Astron. Astrophys. 521, L16 (2010) ADSCrossRefGoogle Scholar
  151. P. Ghavamian, J.M. Laming, C.E. Rakowski, A physical relationship between electron-proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys. J. Lett. 654, L69–L72 (2007). arXiv:astro-ph/0611306 ADSCrossRefGoogle Scholar
  152. V.L. Ginzburg, S.I. Syrovatskii, Cosmic Magnetobremsstrahlung (synchrotron radiation). Annu. Rev. Astron. Astrophys. 3, 297 (1965) ADSCrossRefGoogle Scholar
  153. V.L. Ginzburg, S.I. Syrovatskij, Cosmic rays in the galaxy (introductory report), in Radio Astronomy and the Galactic System, ed. by H. van Woerden. IAU Symposium, vol. 31 (1967), p. 411 Google Scholar
  154. F. Giordano, M. Naumann-Godo, J. Ballet, K. Bechtol et al., Fermi-LAT detection of the young supernova remnant Tycho (2011). arXiv:1108.0265
  155. A. Giuliani, M. Tavani, A. Bulgarelli, E. Striani et al., AGILE detection of GeV γ-ray emission from the SNR W28. Astron. Astrophys. 516, L11 (2010). arXiv:1005.0784 ADSCrossRefGoogle Scholar
  156. A. Giuliani, M. Cardillo, M. Tavani, Y. Fukui et al., Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys. J. Lett. 742, L30 (2011) ADSCrossRefGoogle Scholar
  157. G. Gloeckler, J. Geiss, H. Balsiger, L.A. Fisk et al., Detection of interstellar pick-up hydrogen in the solar system. Science 261, 70–73 (1993) ADSCrossRefGoogle Scholar
  158. E.V. Gotthelf, B. Koralesky, L. Rudnick, T.W. Jones et al., Chandra detection of the forward and reverse shocks in Cassiopeia A. Astrophys. J. Lett. 552, L39–L43 (2001). arXiv:astro-ph/0104161 ADSCrossRefGoogle Scholar
  159. D.A. Green, A catalogue of galactic supernova remnants (Green, 2009). VizieR Online Data Catalog 7253 (2009) Google Scholar
  160. S.F. Gull, A numerical model of the structure and evolution of young supernova remnants. Mon. Not. R. Astron. Soc. 161, 47–69 (1973) ADSGoogle Scholar
  161. A.J.S. Hamilton, C.L. Sarazin, A.E. Szymkowiak, The X-ray spectrum of SN 1006. Astrophys. J. 300, 698–712 (1986) ADSCrossRefGoogle Scholar
  162. C. Heiles, Clustered supernovae versus the gaseous disk and halo. Astrophys. J. 354, 483–491 (1990) ADSCrossRefGoogle Scholar
  163. E.A. Helder, J. Vink, Characterizing the nonthermal emission of Cassiopeia A. Astrophys. J. 686, 1094–1102 (2008) ADSCrossRefGoogle Scholar
  164. E.A. Helder, J. Vink, C.G. Bassa, A. Bamba et al., Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325, 719 (2009). arXiv:0906.4553 ADSCrossRefGoogle Scholar
  165. E.A. Helder, D. Kosenko, J. Vink, Cosmic-ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys. J. Lett. 719, L140–L144 (2010). arXiv:1007.3138 ADSCrossRefGoogle Scholar
  166. E.A. Helder, J. Vink, C.G. Bassa, Temperature equilibration behind the shock front: an optical and X-ray study of RCW 86. Astrophys. J. 737, 85 (2011). arXiv:1106.0303 ADSCrossRefGoogle Scholar
  167. J.F. Helmboldt, N.E. Kassim, The evolution of Cassiopeia A at low radio frequencies. Astron. J. 138, 838–844 (2009). arXiv:0903.5010 ADSCrossRefGoogle Scholar
  168. K. Heng, Balmer-dominated shocks: a concise review. Publ. Astron. Soc. Aust. 27, 23–44 (2010). arXiv:0908.4080 ADSCrossRefGoogle Scholar
  169. K. Heng, R. McCray, Balmer-dominated shocks revisited. Astrophys. J. 654, 923–937 (2007). arXiv:astro-ph/0609331 ADSCrossRefGoogle Scholar
  170. K. Heng, M. van Adelsberg, R. McCray, J.C. Raymond, The transition zone in Balmer-dominated shocks. Astrophys. J. 668, 275–284 (2007). arXiv:0705.2619 ADSCrossRefGoogle Scholar
  171. E. Herbst, W. Klemperer, The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505–534 (1973) ADSCrossRefGoogle Scholar
  172. V.F. Hess, Über die Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Z. Phys. 13, 1084 (1912) Google Scholar
  173. J.J. Hester, J.C. Raymond, W.P. Blair, The Balmer-dominated northeast limb of the Cygnus loop supernova remnant. Astrophys. J. 420, 721–745 (1994) ADSCrossRefGoogle Scholar
  174. J.W. Hewitt, F. Yusef-Zadeh, M. Wardle, D.A. Roberts et al., Green bank telescope observations of IC 443: the nature of OH (1720 MHz) masers and OH absorption. Astrophys. J. 652, 1288–1296 (2006). arXiv:astro-ph/0602210 ADSCrossRefGoogle Scholar
  175. J.W. Hewitt, F. Yusef-Zadeh, M. Wardle, Correlation of supernova remnant masers and Gamma-ray sources. Astrophys. J. Lett. 706, L270–L274 (2009). arXiv:0909.2827 ADSCrossRefGoogle Scholar
  176. J.C. Higdon, R.E. Lingenfelter, OB associations, supernova-generated superbubbles, and the source of cosmic rays. Astrophys. J. 628, 738–749 (2005) ADSCrossRefGoogle Scholar
  177. A.M. Hillas, Topical review: can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G, Nucl. Part. Phys. 31, 95 (2005) ADSCrossRefGoogle Scholar
  178. W. Hillebrandt, J.C. Niemeyer, Type IA supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000). arXiv:astro-ph/0006305 ADSCrossRefGoogle Scholar
  179. J.A. Hinton, W. Hofmann, Teraelectronvolt astronomy. Annu. Rev. Astron. Astrophys. 47, 523–565 (2009) ADSCrossRefGoogle Scholar
  180. J.S. Hiraga, Y. Uchiyama, T. Takahashi, F.A. Aharonian, Spectral properties of nonthermal X-ray emission from the shell-type SNR RX J1713.7 3946 as revealed by XMM-Newton. Astron. Astrophys. 431, 953–961 (2005). arXiv:astro-ph/0407401 ADSCrossRefGoogle Scholar
  181. I.M. Hoffman, W.M. Goss, C.L. Brogan, M.J. Claussen, The OH (1720 MHz) supernova remnant masers in W44: MERLIN and VLBA polarization observations. Astrophys. J. 627, 803–812 (2005). arXiv:astro-ph/0503481 ADSCrossRefGoogle Scholar
  182. P. Hofverberg, R.C.G. Chaves, A. Fiasson, K. Kosack et al., Discovery of VHE gamma-rays from the vicinity of the shell-type SNR G318.2+0.1 with H.E.S.S (2011a). arXiv:1104.5119
  183. P. Hofverberg, R.C.G. Chaves, J. Méhault, M. de Naurois et al., Discovery of VHE gamma-ray emission from the SNR G15.4+0.1 with H.E.S.S (2011b). arXiv:1112.2901
  184. J.A. Högbom, J.R. Shakeshaft, Secular variation of the flux density of the radio source Cassiopeia A. Nature 189, 561–562 (1961) ADSCrossRefGoogle Scholar
  185. L. Hovey, J.P. Hughes, Astrophys. J. (2012, in prep.) Google Scholar
  186. F. Hoyle, W.A. Fowler, Nucleosynthesis in supernovae. Astrophys. J. 132, 565 (1960) ADSCrossRefGoogle Scholar
  187. J.P. Hughes, C.E. Rakowski, A. Decourchelle, Electron heating and cosmic rays at a supernova shock from Chandra X-ray observations of 1E 0102.2-7219. Astrophys. J. Lett. 543, L61–L65 (2000). arXiv:astro-ph/0007032 ADSCrossRefGoogle Scholar
  188. U. Hwang, R. Petre, S.S. Holt, A.E. Szymkowiak, The thermal X-ray-emitting shell of large Magellanic cloud supernova remnant 0540-69.3. Astrophys. J. 560, 742–748 (2001). arXiv:astro-ph/0106415 ADSCrossRefGoogle Scholar
  189. N. Indriolo, G.A. Blake, M. Goto, T. Usuda et al., Investigating the cosmic-ray ionization rate near the supernova remnant IC 443 through \(\mathrm{H}^{+}_{3}\) observations. Astrophys. J. 724, 1357–1365 (2010). arXiv:1010.3252 ADSCrossRefGoogle Scholar
  190. T. Inoue, R. Yamazaki, S. Inutsuka, Two-step acceleration model of cosmic rays at middle-aged supernova remnants: universality in secondary shocks. Astrophys. J. Lett. 723, L108–L112 (2010). arXiv:1010.0706 ADSCrossRefGoogle Scholar
  191. T. Inui, K. Koyama, H. Matsumoto, T.G. Tsuru, Time variability of the neutral iron lines from the Sagittarius B2 region and its implication of a past outburst of Sagittarius A. Publ. Astron. Soc. Jpn. 61, 241 (2009) ADSGoogle Scholar
  192. P.A. Isenberg, Interstellar pickup ions: not just theory anymore. Rev. Geophys. 33, 623–628 (1995) ADSCrossRefGoogle Scholar
  193. J.R. Jokipii, Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313, 842–846 (1987) ADSCrossRefGoogle Scholar
  194. T.J. Jones, L. Rudnick, T. DeLaney, J. Bowden, The identification of infrared synchrotron radiation from Cassiopeia A. Astrophys. J. 587, 227 (2003) ADSCrossRefGoogle Scholar
  195. B.I. Jun, M.L. Norman, On the origin of radial magnetic fields in young supernova remnants. Astrophys. J. 472, 245 (1996). arXiv:astro-ph/9606096 ADSCrossRefGoogle Scholar
  196. T. Kamae, N. Karlsson, T. Mizuno, T. Abe et al., Parameterization of γ, e+/−, and neutrino spectra produced by p-p interaction in astronomical environments. Astrophys. J. 647, 692–708 (2006). arXiv:astro-ph/0605581 ADSCrossRefGoogle Scholar
  197. H. Katagiri, L. Tibaldo, J. Ballet, F. Giordano et al., Fermi large area telescope observations of the Cygnus loop supernova remnant. Astrophys. J. 741, 44 (2011). arXiv:1108.1833 ADSCrossRefGoogle Scholar
  198. S. Katsuda, H. Tsunemi, K. Mori, The slow X-ray expansion of the northwestern rim of the supernova remnant RX J0852.0-4622. Astrophys. J. Lett. 678, L35–L38 (2008). arXiv:0803.3266 ADSCrossRefGoogle Scholar
  199. S. Katsuda, R. Petre, J.P. Hughes, U. Hwang et al., X-ray measured dynamics of Tycho’s supernova remnant. Astrophys. J. 709, 1387–1395 (2010a). arXiv:1001.2484 ADSCrossRefGoogle Scholar
  200. S. Katsuda, R. Petre, K. Mori, S.P. Reynolds et al., Steady X-ray synchrotron emission in the northeastern limb of SN 1006. Astrophys. J. 723, 383–392 (2010b). arXiv:1009.0280 ADSCrossRefGoogle Scholar
  201. J. Katsuta, Y. Uchiyama, T. Tanaka, H. Tajima et al., Fermi-LAT observation of supernova remnant S147 (2012). arXiv:1204.4703
  202. B. Katz, E. Waxman, In which shell-type SNRs should we look for gamma-rays and neutrinos from P-P collisions? J. Cosmol. Astropart. Phys. 1, 18 (2008). arXiv:0706.3485 ADSCrossRefGoogle Scholar
  203. S.R. Kelner, F.A. Aharonian, V.V. Bugayov, Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D 74(3), 034018 (2006). arXiv:astro-ph/0606058 ADSCrossRefGoogle Scholar
  204. J.W. Keohane, W.T. Reach, J. Rho, T.H. Jarrett, A near-infrared and X-ray study of W49 B: a wind cavity explosion. Astrophys. J. 654, 938–944 (2007). arXiv:astro-ph/0609533 ADSCrossRefGoogle Scholar
  205. R.P. Kirshner, R.A. Chevalier, Spectra of Cassiopeia A. I. Observations. Astrophys. J. 218, 142–147 (1977) ADSCrossRefGoogle Scholar
  206. R.P. Kirshner, R.A. Chevalier, The spectrum of Tycho’s supernova remnant. Astron. Astrophys. 67, 267–271 (1978) ADSGoogle Scholar
  207. E.G. Klepach, V.S. Ptuskin, V.N. Zirakashvili, Cosmic ray acceleration by multiple spherical shocks. Astropart. Phys. 13, 161–172 (2000) ADSCrossRefGoogle Scholar
  208. J. Knödlseder, Cygnus OB2—a young globular cluster in the Milky Way. Astron. Astrophys. 360, 539–548 (2000). arXiv:astro-ph/0007442 ADSGoogle Scholar
  209. D. Kosenko, J. Vink, S. Blinnikov, A. Rasmussen, XMM-Newton X-ray spectra of the SNR 0509-67.5: data and models. Astron. Astrophys. 490, 223–230 (2008). arXiv:0807.0579 ADSCrossRefGoogle Scholar
  210. D. Kosenko, E.A. Helder, J. Vink, The kinematics and chemical stratification of the type Ia supernova remnant 0519-69.0. An XMM-Newton and Chandra study. Astron. Astrophys. 519, A11 (2010). arXiv:1001.0983 ADSCrossRefGoogle Scholar
  211. D. Kosenko, S.I. Blinnikov, J. Vink, Modeling supernova remnants: effects of diffusive cosmic-ray acceleration on the evolution and application to observations. Astron. Astrophys. 532, A114 (2011). arXiv:1105.5966 ADSCrossRefGoogle Scholar
  212. K. Koyama, R. Petre, E.V. Gotthelf, U. Hwang et al., Evidence for shock acceleration of high-energy electrons in the supernova remnant SN:1006. Nature 378, 255 (1995) ADSCrossRefGoogle Scholar
  213. K. Koyama, Y. Maeda, T. Sonobe, T. Takeshima et al., ASCA view of our galactic center: remains of past activities in X-rays? Publ. Astron. Soc. Jpn. 48, 249–255 (1996) ADSGoogle Scholar
  214. K. Koyama, K. Kinugasa, K. Matsuzaki, M. Nishiuchi et al., Discovery of non-thermal X-rays from the northwest shell of the new SNR RX J1713.7-3946. Publ. Astron. Soc. Jpn. 49, L7–L11 (1997) ADSGoogle Scholar
  215. K. Koyama, Y. Hyodo, T. Inui, H. Nakajima et al., Iron and nickel line diagnostics for the galactic center diffuse emission. Publ. Astron. Soc. Jpn. 59, 245–255 (2007). arXiv:astro-ph/0609215 ADSGoogle Scholar
  216. O. Krause, S.M. Birkmann, T. Usuda, T. Hattori et al., The Cassiopeia A supernova was of type IIb. Science 320, 1195 (2008). arXiv:0805.4557 ADSCrossRefGoogle Scholar
  217. G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977) ADSGoogle Scholar
  218. H. Laffon, B. Khélifi, F. Brun, F. Acero et al., Evidence for VHE emission from SNR G22.7-0.2 region with H.E.S.S (2011). arXiv:1110.6890
  219. P.O. Lagage, C.J. Cesarsky, The maximum energy of cosmic rays accelerated by supernova shocks. Astron. Astrophys. 125, 249–257 (1983) ADSzbMATHGoogle Scholar
  220. J.M. Laming, Accelerated electrons in Cassiopeia A: an explanation for the hard X-ray tail. Astrophys. J. 546, 1149–1158 (2001) ADSCrossRefGoogle Scholar
  221. J.M. Laming, U. Hwang, On the determination of ejecta structure and explosion asymmetry from the X-ray knots of Cassiopeia A. Astrophys. J. 597, 347–361 (2003). arXiv:astro-ph/0306119 ADSCrossRefGoogle Scholar
  222. T.N. LaRosa, C.L. Brogan, S.N. Shore, T.J. Lazio et al., Evidence of a weak galactic center magnetic field from diffuse low-frequency nonthermal radio emission. Astrophys. J. Lett. 626, L23–L27 (2005). arXiv:astro-ph/0505244 ADSCrossRefGoogle Scholar
  223. J.J. Lee, B.C. Kao, J. Raymond, P. Ghavamian et al., Subaru HDS observations of a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. Lett. 659, L133–L136 (2007) ADSCrossRefGoogle Scholar
  224. J. Lee, J.C. Raymond, S. Park, W.P. Blair et al., Resolved shock structure of the Balmer-dominated filaments in Tycho’s supernova remnant: cosmic-ray precursor? Astrophys. J. Lett. 715, L146–L149 (2010). arXiv:1005.3296 ADSCrossRefGoogle Scholar
  225. H. Li, Y. Chen, Gamma-rays from molecular clouds illuminated by accumulated diffusive protons. II. Interacting supernova remnants (2011). arXiv:1108.4541
  226. W. Li, J. Leaman, R. Chornock, A.V. Filippenko et al., Nearby supernova rates from the lick observatory supernova search. II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011). arXiv:1006.4612 ADSCrossRefGoogle Scholar
  227. A.J. Lim, A.C. Raga, A distribution function calculation of the Hα profiles of high-velocity shocks. II. The broad component neutral precursor. Mon. Not. R. Astron. Soc. 280, 103–114 (1996) ADSGoogle Scholar
  228. S.G. Lucek, A.R. Bell, Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 314, 65–74 (2000) ADSCrossRefGoogle Scholar
  229. L.A. Maddox, R.M. Williams, B.C. Dunne, Y.H. Chu, Nonthermal X-ray emission in the N11 superbubble in the large Magellanic cloud. Astrophys. J. 699, 911–916 (2009). arXiv:0904.1821 ADSCrossRefGoogle Scholar
  230. M.A. Malkov, Analytic solution for nonlinear shock acceleration in the Bohm limit. Astrophys. J. 485, 638 (1997). arXiv:astro-ph/9707152 ADSCrossRefGoogle Scholar
  231. M.A. Malkov, Asymptotic particle spectra and plasma flows at strong shocks. Astrophys. J. Lett. 511, L53–L56 (1999). arXiv:astro-ph/9807097 ADSCrossRefGoogle Scholar
  232. M.A. Malkov, L. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001) ADSCrossRefGoogle Scholar
  233. M.A. Malkov, P.H. Diamond, R.Z. Sagdeev, Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44. Nature Communications 2 (2011). arXiv:1004.4714
  234. J.M. Marcaide, I. Martí-Vidal, A. Alberdi, M.A. Pérez-Torres et al., A decade of SN 1993J: discovery of radio wavelength effects in the expansion rate. Astron. Astrophys. 505, 927–945 (2009). arXiv:0903.3833 ADSCrossRefGoogle Scholar
  235. A. Marcowith, M. Lemoine, G. Pelletier, Turbulence and particle acceleration in collisionless supernovae remnant shocks. II. Cosmic-ray transport. Astron. Astrophys. 453, 193–202 (2006). arXiv:astro-ph/0603462 ADSzbMATHCrossRefGoogle Scholar
  236. I. Martí-Vidal, M.A. Pérez-Torres, A. Brunthaler, Electron cooling and the connection between expansion and flux-density evolution in radio supernovae. Astron. Astrophys. 529, A47 (2011). arXiv:1101.5380 ADSCrossRefGoogle Scholar
  237. C.F. McKee, J.P. Ostriker, A theory of the interstellar medium—three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977) ADSCrossRefGoogle Scholar
  238. J.F. McKenzie, H.J. Völk, Non-linear theory of cosmic ray shocks including self-generated Alfven waves. Astron. Astrophys. 116, 191–200 (1982) ADSzbMATHGoogle Scholar
  239. J. Méhault, A.C. Clapson, M. Fuessling, A. Abramowski et al., Unveiling the origin of gamma-ray emission towards the W41 region with H.E.S.S. data, in 38th COSPAR Scientific Assembly, vol. 38 (2010), p. 2801 Google Scholar
  240. F. Melia, M. Fatuzzo, Diffusive cosmic-ray acceleration at the galactic centre. Mon. Not. R. Astron. Soc. 410, L23–L27 (2011). arXiv:1010.2949 ADSCrossRefGoogle Scholar
  241. M. Miceli, F. Bocchino, D. Iakubovskyi, S. Orlando et al., Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006. Astron. Astrophys. 501, 239–249 (2009). arXiv:0903.3392 ADSCrossRefGoogle Scholar
  242. D.K. Milne, An atlas of supernova remnant magnetic fields. Aust. J. Phys. 40, 771–787 (1987) ADSGoogle Scholar
  243. R. Minkowski, Spectra of supernovae. Publ. Astron. Soc. Pac. 53, 224 (1941) ADSCrossRefGoogle Scholar
  244. R. Minkowski, Optical investigations of radio sources (introductory lecture), in Radio Astronomy, ed. by H.C. van de Hulst. IAU Symposium, vol. 4, (1957), p. 107 Google Scholar
  245. E. Miyata, H. Tsunemi, B. Aschenbach, K. Mori, Chandra X-ray observatory study of Vela Shrapnel A. Astrophys. J. Lett. 559, L45–L48 (2001) ADSCrossRefGoogle Scholar
  246. E. Moebius, D. Hovestadt, B. Klecker, M. Scholer et al., Direct observation of He(+) pick-up ions of interstellar origin in the solar wind. Nature 318, 426–429 (1985) ADSCrossRefGoogle Scholar
  247. G. Morlino, D. Caprioli, Strong evidences of hadron acceleration in Tycho’s supernova remnant (2011). arXiv:1105.6342
  248. M. Morris, E. Serabyn, The galactic center environment. Annu. Rev. Astron. Astrophys. 34, 645–702 (1996) ADSCrossRefGoogle Scholar
  249. M.P. Muno, F.K. Baganoff, W.N. Brandt, S. Park et al., Discovery of variable iron fluorescence from reflection nebulae in the galactic center. Astrophys. J. Lett. 656, L69–L72 (2007). arXiv:astro-ph/0611651 ADSCrossRefGoogle Scholar
  250. C.Y. Ng, B.M. Gaensler, L. Staveley-Smith, R.N. Manchester et al., Fourier modeling of the radio torus surrounding SN 1987A. Astrophys. J. 684, 481–497 (2008). arXiv:0805.4195 ADSCrossRefGoogle Scholar
  251. J. Niemiec, M. Pohl, T. Stroman, K.I. Nishikawa, Production of magnetic turbulence by cosmic rays drifting upstream of supernova remnant shocks. Astrophys. J. 684, 1174–1189 (2008). arXiv:0802.2185 ADSCrossRefGoogle Scholar
  252. C.A. Norman, S. Ikeuchi, The disk-halo interaction—superbubbles and the structure of the interstellar medium. Astrophys. J. 345, 372–383 (1989) ADSCrossRefGoogle Scholar
  253. Y. Ohira, F. Takahara, Effects of neutral particles on modified shocks at supernova remnants. Astrophys. J. Lett. 721, L43–L47 (2010). arXiv:0912.2859 ADSCrossRefGoogle Scholar
  254. Y. Ohira, B. Reville, J.G. Kirk, F. Takahara, Two-dimensional particle-in-cell simulations of the nonresonant, cosmic-ray-driven instability in supernova remnant shocks. Astrophys. J. 698, 445–450 (2009a). arXiv:0812.0901 ADSCrossRefGoogle Scholar
  255. Y. Ohira, T. Terasawa, F. Takahara, Plasma instabilities as a result of charge exchange in the downstream region of supernova remnant shocks. Astrophys. J. Lett. 703, L59–L62 (2009b). arXiv:0908.3369 ADSCrossRefGoogle Scholar
  256. Y. Ohira, K. Murase, R. Yamazaki, Escape-limited model of cosmic-ray acceleration revisited. Astron. Astrophys. 513, A17 (2010). arXiv:0910.3449 ADSCrossRefGoogle Scholar
  257. Y. Ohira, K. Murase, R. Yamazaki, Gamma-rays from molecular clouds illuminated by cosmic rays escaping from interacting supernova remnants. Mon. Not. R. Astron. Soc. 410, 1577–1582 (2011a). arXiv:1007.4869 ADSGoogle Scholar
  258. Y. Ohira, R. Yamazaki, N. Kawanaka, K. Ioka, Escape of cosmic-ray electrons from supernova remnants (2011b). arXiv:1106.1810
  259. T. Oka, T.R. Geballe, M. Goto, T. Usuda et al., Hot and diffuse clouds near the galactic center probed by metastable \(\mathrm{H}^{+}_{3}1\). Astrophys. J. 632, 882–893 (2005). arXiv:astro-ph/0507463 ADSCrossRefGoogle Scholar
  260. J.H. Oort, Problems in Cosmical Aerodynamics (Central Air Documents Office, Dayton, 1951) Google Scholar
  261. S. Orlando, F. Bocchino, M. Miceli, O. Petruk et al., Role of ejecta clumping and back-reaction of accelerated cosmic rays in the evolution of type Ia supernova remnants. Astrophys. J. 749, 156 (2012). arXiv:1202.3593 ADSCrossRefGoogle Scholar
  262. J.P. Ostriker, C.F. McKee, Astrophysical blastwaves. Rev. Mod. Phys. 60, 1–68 (1988) ADSCrossRefGoogle Scholar
  263. M. Padovani, D. Galli, Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores. Astron. Astrophys. 530, A109 (2011). arXiv:1104.5445 ADSCrossRefGoogle Scholar
  264. M. Padovani, D. Galli, A.E. Glassgold, Cosmic-ray ionization of molecular clouds. Astron. Astrophys. 501, 619–631 (2009). arXiv:0904.4149 ADSCrossRefGoogle Scholar
  265. E. Parizot, A. Marcowith, E. van der Swaluw, A.M. Bykov et al., Superbubbles and energetic particles in the galaxy. I. Collective effects of particle acceleration. Astron. Astrophys. 424, 747–760 (2004). arXiv:astro-ph/0405531 ADSCrossRefGoogle Scholar
  266. E. Parizot, A. Marcowith, J. Ballet, Y.A. Gallant, Observational constraints on energetic particle diffusion in young supernovae remnants: amplified magnetic field and maximum energy. Astron. Astrophys. 453, 387–395 (2006). arXiv:astro-ph/0603723 ADSCrossRefGoogle Scholar
  267. S. Park, J.P. Hughes, P.O. Slane, K. Mori et al., A deep Chandra observation of the oxygen-rich supernova remnant 0540-69.3 in the large Magellanic cloud. Astrophys. J. 710, 948–957 (2010). arXiv:0912.5177 ADSCrossRefGoogle Scholar
  268. D.J. Patnaude, R.A. Fesen, Small-scale X-ray variability in the Cassiopeia A supernova remnant. Astron. J. 133, 147–153 (2007). arXiv:astro-ph/0609412 ADSCrossRefGoogle Scholar
  269. D.J. Patnaude, R.A. Fesen, Proper motions and brightness variations of nonthermal X-ray filaments in the Cassiopeia A supernova remnant. Astrophys. J. 697, 535–543 (2009). arXiv:0808.0692 ADSCrossRefGoogle Scholar
  270. D.J. Patnaude, D.C. Ellison, P. Slane, The role of diffusive shock acceleration on nonequilibrium ionization in supernova remnants. Astrophys. J. 696, 1956–1963 (2009). arXiv:0902.2481 ADSCrossRefGoogle Scholar
  271. D.J. Patnaude, J. Vink, J.M. Laming, R.A. Fesen, A decline in the nonthermal X-ray emission from Cassiopeia A. Astrophys. J. Lett. 729, L28 (2011). arXiv:1012.0243 ADSCrossRefGoogle Scholar
  272. T. Paumard, R. Genzel, F. Martins, S. Nayakshin et al., The two young star disks in the central parsec of the galaxy: properties, dynamics, and formation. Astrophys. J. 643, 1011–1035 (2006). arXiv:astro-ph/0601268 ADSCrossRefGoogle Scholar
  273. O. Petruk, On the transition of the adiabatic supernova remnant to the radiative stage in a nonuniform interstellar medium. J. Phys. Stud. 9, 364–373 (2005) Google Scholar
  274. M. Pohl, H. Yan, A. Lazarian, Magnetically limited X-ray filaments in young supernova remnants. Astrophys. J. Lett. 626, L101–L104 (2005) ADSCrossRefGoogle Scholar
  275. G. Ponti, R. Terrier, A. Goldwurm, G. Belanger et al., Discovery of a superluminal Fe K echo at the galactic center: the glorious past of Sgr A* preserved by molecular clouds. Astrophys. J. 714, 732–747 (2010). arXiv:1003.2001 ADSCrossRefGoogle Scholar
  276. D. Porquet, N. Grosso, P. Predehl, G. Hasinger et al., X-ray hiccups from Sagittarius A* observed by XMM-Newton. The second brightest flare and three moderate flares caught in half a day. Astron. Astrophys. 488, 549–557 (2008). arXiv:0806.4088 ADSCrossRefGoogle Scholar
  277. S.F. Portegies Zwart, S.L.W. McMillan, M. Gieles, Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010). arXiv:1002.1961 ADSCrossRefGoogle Scholar
  278. V.S. Ptuskin, V.N. Zirakashvili, On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation. Astron. Astrophys. 429, 755–765 (2005). arXiv:astro-ph/0408025 ADSCrossRefGoogle Scholar
  279. V. Ptuskin, V. Zirakashvili, E.S. Seo, Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys. J. 718, 31–36 (2010). arXiv:1006.0034 ADSCrossRefGoogle Scholar
  280. E. Quataert, A. Loeb, Nonthermal THz to TeV emission from stellar wind shocks in the galactic center. Astrophys. J. Lett. 635, L45–L48 (2005). arXiv:astro-ph/0509265 ADSCrossRefGoogle Scholar
  281. C.E. Rakowski, J.M. Laming, P. Ghavamian, The heating of thermal electrons in fast collisionless shocks: the integral role of cosmic rays. Astrophys. J. 684, 348–357 (2008). arXiv:0805.3084 ADSCrossRefGoogle Scholar
  282. C.E. Rakowski, J.M. Laming, U. Hwang, K.A. Eriksen et al., The effect of a cosmic ray precursor in SN 1006? Astrophys. J. Lett. 735, L21 (2011). arXiv:1104.3736 ADSCrossRefGoogle Scholar
  283. J.C. Raymond, Theoretical models of shock waves in the interstellar medium. Ph.D. thesis, The University of Wisconsin-Madison (1976) Google Scholar
  284. J.C. Raymond, Shock waves in the interstellar medium. Astrophys. J. Suppl. Ser. 39, 1–27 (1979) ADSCrossRefGoogle Scholar
  285. J.C. Raymond, Supernova-remnant shock waves close up. Publ. Astron. Soc. Pac. 103, 781–786 (1991) ADSCrossRefGoogle Scholar
  286. J.C. Raymond, P.A. Isenberg, J.M. Laming, Non-Maxwellian proton velocity distributions in nonradiative shocks. Astrophys. J. 682, 408–415 (2008). arXiv:0804.3808 ADSCrossRefGoogle Scholar
  287. J.C. Raymond, P.F. Winkler, W.P. Blair, J. Lee et al., Non-Maxwellian Hα profiles in Tycho’s supernova remnant. Astrophys. J. Lett. 712, 901–907 (2010) ADSCrossRefGoogle Scholar
  288. J.C. Raymond, J. Vink, E.A. Helder, A. de Laat, Effects of neutral hydrogen on cosmic-ray precursors in supernova remnant shock waves. Astrophys. J. Lett. 731, L14 (2011). arXiv:1103.3211 ADSCrossRefGoogle Scholar
  289. J.E. Reed, J.J. Hester, A.C. Fabian, P.F. Winkler, The three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706–721 (1995) ADSCrossRefGoogle Scholar
  290. M. Renaud et al., The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL. Astrophys. J. Lett. 647, L41–L44 (2006) ADSCrossRefGoogle Scholar
  291. B. Reville, A.R. Bell, A filamentation instability for streaming cosmic-rays (2011). arXiv:1109.5690
  292. B. Reville, J.G. Kirk, P. Duffy, Steady-state solutions in nonlinear diffusive shock acceleration. Astrophys. J. 694, 951–958 (2009). arXiv:0812.3993 ADSCrossRefGoogle Scholar
  293. M.G. Revnivtsev, E.M. Churazov, S.Y. Sazonov, R.A. Sunyaev et al., Hard X-ray view of the past activity of Sgr A* in a natural Compton mirror. Astron. Astrophys. 425, L49–L52 (2004). arXiv:astro-ph/0408190 ADSCrossRefGoogle Scholar
  294. S.P. Reynolds, Models of synchrotron X-rays from shell supernova remnants. Astrophys. J. 493, 375 (1998) ADSCrossRefGoogle Scholar
  295. S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008) ADSCrossRefGoogle Scholar
  296. S.P. Reynolds, R.A. Chevalier, Nonthermal radiation from supernova remnants in the adiabatic stage of evolution. Astrophys. J. 245, 912 (1981) ADSCrossRefGoogle Scholar
  297. S.P. Reynolds, D.C. Ellison, Electron acceleration in Tycho’s and Kepler’s supernova remnants—spectral evidence of Fermi shock acceleration. Astrophys. J. Lett. 399, L75–L78 (1992) ADSCrossRefGoogle Scholar
  298. S.P. Reynolds, J.W. Keohane, Maximum energies of shock-accelerated electrons in young shell supernova remnants. Astrophys. J. 525, 368–374 (1999) ADSCrossRefGoogle Scholar
  299. S.P. Reynolds, K.J. Borkowski, U. Hwang, J.P. Hughes et al., A deep Chandra observation of Kepler’s supernova remnant: a type Ia event with circumstellar interaction. Astrophys. J. Lett. 668, L135–L138 (2007). arXiv:0708.3858 ADSCrossRefGoogle Scholar
  300. S.P. Reynolds, K.J. Borkowski, D.A. Green, U. Hwang et al., The youngest galactic supernova remnant: G1.9+0.3. Astrophys. J. Lett. 680, L41–L44 (2008). arXiv:0803.1487 ADSCrossRefGoogle Scholar
  301. S.P. Reynolds, B.M. Gaensler, F. Bocchino, Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231–261 (2011). arXiv:1104.4047 ADSCrossRefGoogle Scholar
  302. J. Rho, K.K. Dyer, K.J. Borkowski, S.P. Reynolds, X-ray synchrotron-emitting Fe-rich ejecta in supernova remnant RCW 86. Astrophys. J. 581, 1116–1131 (2002). arXiv:astro-ph/0208013 ADSCrossRefGoogle Scholar
  303. M. Rosado, E. Le Coarer, Y.P. Georgelin, Kinematics of supernova remnants in the small Magellanic cloud. I. The SNRs inside the nebular complex N 19, the SNR 0046-73.5 and the SNR 0050-72.8. Astron. Astrophys. 286, 231–242 (1994) ADSGoogle Scholar
  304. R. Rothenflug et al., Geometry of the non-thermal emission in SN 1006. Astron. Astrophys. 425, 121–131 (2004) ADSCrossRefGoogle Scholar
  305. G. Salvesen, J.C. Raymond, R.J. Edgar, Shock speed, cosmic ray pressure, and gas temperature in the Cygnus loop. Astrophys. J. 702, 327–339 (2009). arXiv:0812.2515 ADSCrossRefGoogle Scholar
  306. E.M. Schlegel, A new subclass of type II supernovae? Mon. Not. R. Astron. Soc. 244, 269–271 (1990) ADSGoogle Scholar
  307. K.M. Schure, A.R. Bell, A long-wavelength instability involving the stress tensor. MNRAS 1451 (2011). arXiv:1107.5817
  308. K.M. Schure, J. Vink, G. García-Segura, A. Achterberg, Jets as diagnostics of the circumstellar medium and the explosion energetics of supernovae: the case of Cassiopeia A. Astrophys. J. 686, 399–407 (2008). arXiv:0806.4617 ADSCrossRefGoogle Scholar
  309. K.M. Schure, D. Kosenko, J.S. Kaastra, R. Keppens et al., A new radiative cooling curve based on an up-to-date plasma emission code. Astron. Astrophys. 508, 751–757 (2009). arXiv:0909.5204 ADSCrossRefGoogle Scholar
  310. K.M. Schure, A. Achterberg, R. Keppens, J. Vink, Time-dependent particle acceleration in supernova remnants in different environments. Mon. Not. R. Astron. Soc. 406, 2633–2649 (2010). arXiv:1004.2766 ADSCrossRefGoogle Scholar
  311. K.M. Schure, A.R. Bell, L. O’C Drury , A.M. Bykov, Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 14 (2012). arXiv:1203.1637
  312. I.S. Shklovskii, Rep. Acad. USSR 90, 983 (1953) Google Scholar
  313. J.S. Shklovsky, Supernovae. Interscience Monographs and Texts in Physics and Astronomy (Wiley, London, 1968) Google Scholar
  314. P. Slane, B.M. Gaensler, T.M. Dame, J.P. Hughes et al., Nonthermal X-ray emission from the shell-type supernova remnant G347.3-0.5. Astrophys. J. 525, 357–367 (1999) ADSCrossRefGoogle Scholar
  315. P. Slane et al., RX J0852.0-4622: another nonthermal shell-type supernova remnant (G266.2-1.2). Astrophys. J. 548, 814–819 (2001) ADSCrossRefGoogle Scholar
  316. R.C. Smith, R.P. Kirshner, W.P. Blair, P.F. Winkler, Six Balmer-dominated supernova remnants. Astrophys. J. 375, 652–662 (1991) ADSCrossRefGoogle Scholar
  317. J. Sollerman, P. Ghavamian, P. Lundqvist, R.C. Smith, High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. Astron. Astrophys. 407, 249–257 (2003). arXiv:astro-ph/0306196 ADSCrossRefGoogle Scholar
  318. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley-VCH, New Jork, 1978) Google Scholar
  319. F.R. Stephenson, D.A. Green, Historical Supernovae and Their Remnants, vol. 5 (Clarendon, Oxford, 2002) CrossRefGoogle Scholar
  320. M. Su, T.R. Slatyer, D.P. Finkbeiner, Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astrophys. J. 724, 1044–1082 (2010). arXiv:1005.5480 ADSCrossRefGoogle Scholar
  321. R.A. Sunyaev, M. Markevitch, M. Pavlinsky, The center of the galaxy in the recent past—a view from GRANAT. Astrophys. J. 407, 606–610 (1993) ADSCrossRefGoogle Scholar
  322. G.A. Tammann, W. Loeffler, A. Schroeder, The galactic supernova rate. Astrophys. J. Suppl. Ser. 92, 487–493 (1994) ADSCrossRefGoogle Scholar
  323. T. Tanaka, A. Allafort, J. Ballet, S. Funk et al., Gamma-ray observations of the supernova remnant RX J0852.0-4622 with the Fermi large area telescope. Astrophys. J. Lett. 740, L51 (2011). arXiv:1109.4658 ADSCrossRefGoogle Scholar
  324. V. Tatischeff, Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J. Astron. Astrophys. 499, 191–213 (2009). arXiv:0903.2944 ADSCrossRefGoogle Scholar
  325. M. Tavani, G. Barbiellini, A. Argan, A. Bulgarelli et al., The AGILE space mission. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 588, 52–62 (2008) ADSCrossRefGoogle Scholar
  326. M. Tavani, A. Giuliani, A.W. Chen, A. Argan et al., Direct evidence for hadronic cosmic-ray acceleration in the supernova remnant IC 443. Astrophys. J. Lett. 710, L151–L155 (2010). arXiv:1001.5150 ADSCrossRefGoogle Scholar
  327. R. Terrier, G. Ponti, G. Bélanger, A. Decourchelle et al., Fading hard X-ray emission from the galactic center molecular cloud sgr B2. Astrophys. J. 719, 143–150 (2010) ADSCrossRefGoogle Scholar
  328. L.S. The et al., CGRO/OSSE observations of the Cassiopeia A SNR. Astron. Astrophys. Suppl. Ser. 120, C357 (1996) ADSCrossRefGoogle Scholar
  329. W.W. Tian, Z. Li, D.A. Leahy, Q.D. Wang, VLA and XMM-Newton observations of the SNR W41/TeV gamma-ray source HESS J1834-087. Astrophys. J. Lett. 657, L25–L28 (2007). arXiv:astro-ph/0612296 ADSCrossRefGoogle Scholar
  330. D.F. Torres, E. Domingo-Santamaría, G.E. Romero, High-energy gamma rays from stellar associations. Astrophys. J. Lett. 601, L75–L78 (2004). arXiv:astro-ph/0312128 ADSCrossRefGoogle Scholar
  331. D.F. Torres, H. Li, Y. Chen, A. Cillis et al., Cosmic rays in the surroundings of SNR G35.6-0.4. Mon. Not. R. Astron. Soc. 417, 3072–3079 (2011). arXiv:1107.3470 ADSCrossRefGoogle Scholar
  332. J.K. Truelove, C.F. McKee, Evolution of nonradiative supernova remnants. Astrophys. J. Suppl. Ser. 120, 299–326 (1999) ADSCrossRefGoogle Scholar
  333. Y. Uchiyama, F.A. Aharonian, Fast variability of nonthermal X-ray emission in Cassiopeia A: probing electron acceleration in reverse-shocked ejecta. Astrophys. J. Lett. 677, L105–L108 (2008). arXiv:0803.3410 ADSCrossRefGoogle Scholar
  334. Y. Uchiyama, F.A. Aharonian, T. Tanaka, T. Takahashi et al., Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576–578 (2007) ADSCrossRefGoogle Scholar
  335. Y. Uchiyama, R.D. Blandford, S. Funk, H. Tajima et al., Gamma-ray emission from crushed clouds in supernova remnants. Astrophys. J. Lett. 723, L122–L126 (2010). arXiv:1008.1840 ADSCrossRefGoogle Scholar
  336. A. Valinia, V. Tatischeff, K. Arnaud, K. Ebisawa et al., On the origin of the iron K line in the spectrum of the galactic X-ray background. Astrophys. J. 543, 733–739 (2000). arXiv:astro-ph/0006202 ADSCrossRefGoogle Scholar
  337. M. van Adelsberg, K. Heng, R. McCray, J.C. Raymond, Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys. J. 689, 1089–1104 (2008). arXiv:0803.2521 ADSCrossRefGoogle Scholar
  338. S. van den Bergh, Optical studies of Cassiopeia A. III. Spectra of the supernova remnant. Astrophys. J. 165, 457 (1971) ADSCrossRefGoogle Scholar
  339. H. van der Laan, Expanding supernova remnants and galactic radio sources. Mon. Not. R. Astron. Soc. 124, 125 (1962) ADSGoogle Scholar
  340. A.J. van Marle, N. Langer, G. García-Segura, Wind-blown bubbles around massive stars: the effects of stellar wind and photo-ionization on the circumstellar medium, in Revista Mexicana de Astronomia y Astrofisica Conference Series, vol. 22, ed. by G. Garcia-Segura. G. Tenorio-Tagle, J. Franco, H.W. Yorke (2004), pp. 136–139 Google Scholar
  341. B. van Veelen, N. Langer, J. Vink, G. García-Segura et al., The hydrodynamics of the supernova remnant Cassiopeia A. The influence of the progenitor evolution on the velocity structure and clumping. Astron. Astrophys. 503, 495–503 (2009). arXiv:0907.1197 ADSCrossRefGoogle Scholar
  342. R.J. van Weeren, H.J.A. Röttgering, M. Brüggen, M. Hoeft, Particle acceleration on megaparsec scales in a merging galaxy cluster. Science 330, 347 (2010). arXiv:1010.4306 ADSCrossRefGoogle Scholar
  343. J. Vink, A review of X-ray observations of supernova remnants. Nucl. Phys. B, Proc. Suppl. 132, 21–30 (2004). arXiv:astro-ph/0311406 ADSCrossRefGoogle Scholar
  344. J. Vink, Non-thermal X-ray emission from supernova remnants, in AIP Conf. Proc. 745: High Energy Gamma-Ray Astronomy, ed. by F.A. Aharonian, H.J. Völk, D. Horns (2005), pp. 160–171 Google Scholar
  345. J. Vink, X-ray high resolution and imaging spectroscopy of supernova remnants, in The X-ray Universe 2005, ed. by A. Wilson. ESA SP-604, vol. 1 (ESA, ESTEC, The Netherlands, 2006), p. 319 Google Scholar
  346. J. Vink, Multiwavelength signatures of cosmic ray acceleration by young supernova remnants, in High Energy Gamma-Ray Astronomy: Proceedings of the 4th International Meeting on High Energy Gamma-Ray Astronomy, vol. 1085 (AIP, College Park, 2008a), pp. 169–180 Google Scholar
  347. J. Vink, Non-thermal bremsstrahlung from supernova remnants and the effect of Coulomb losses. Astron. Astrophys. 486, 837–841 (2008b). arXiv:0806.4393 ADSCrossRefGoogle Scholar
  348. J. Vink, The kinematics of Kepler’s supernova remnant as revealed by Chandra. Astrophys. J. 689, 231–241 (2008c). arXiv:0803.4011 ADSCrossRefGoogle Scholar
  349. J. Vink, J.M. Laming, On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584, 758–769 (2003). arXiv:astro-ph/0210669 ADSCrossRefGoogle Scholar
  350. J. Vink, J.S. Kaastra, J.A.M. Bleeker, X-ray spectroscopy of the supernova remnant RCW 86. A new challenge for modeling the emission from supernova remnants. Astron. Astrophys. 328, 628–633 (1997) ADSGoogle Scholar
  351. J. Vink, H. Bloemen, J.S. Kaastra, J.A.M. Bleeker, The expansion of Cassiopeia A as seen in X-rays. Astron. Astrophys. 339, 201–207 (1998) ADSGoogle Scholar
  352. J. Vink et al., Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of 44Ti in Cassiopeia A. Astrophys. J. Lett. 560, L79–L82 (2001) ADSCrossRefGoogle Scholar
  353. J. Vink, J. Bleeker, K. van der Heyden, A. Bykov et al., The X-ray synchrotron emission of RCW 86 and the implications for its age. Astrophys. J. Lett. 648, L33–L37 (2006) ADSCrossRefGoogle Scholar
  354. J. Vink, R. Yamazaki, E.A. Helder, K.M. Schure, The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks. Astrophys. J. 722, 1727–1734 (2010). arXiv:1008.4367 ADSCrossRefGoogle Scholar
  355. A. Vladimirov, D.C. Ellison, A. Bykov, Nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 652, 1246–1258 (2006). arXiv:astro-ph/0606433 ADSCrossRefGoogle Scholar
  356. A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 688, 1084–1101 (2008). arXiv:0807.1321 ADSCrossRefGoogle Scholar
  357. A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. Astrophys. J. Lett. 703, L29–L32 (2009). arXiv:0908.2602 ADSCrossRefGoogle Scholar
  358. H.J. Völk, E.G. Berezhko, L.T. Ksenofontov, Magnetic field amplification in Tycho and other shell-type supernova remnants. Astron. Astrophys. 433, 229–240 (2005) ADSCrossRefGoogle Scholar
  359. A.Y. Wagner, J.J. Lee, J.C. Raymond, T.W. Hartquist et al., A cosmic-ray precursor model for a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. 690, 1412–1423 (2009). arXiv:0809.2504 ADSCrossRefGoogle Scholar
  360. C.Y. Wang, Rayleigh-Taylor instabilities in type Ia supernova remnants undergoing cosmic ray particle acceleration—low adiabatic index solutions. Mon. Not. R. Astron. Soc. 415, 83–92 (2011). arXiv:1011.3129 ADSCrossRefGoogle Scholar
  361. Z.R. Wang, Q.Y. Qu, Y. Chen, Is RX J1713.7-3946 the remnant of the AD393 guest star? Astron. Astrophys. 318, L59–L61 (1997) ADSGoogle Scholar
  362. M. Wardle, F. Yusef-Zadeh, Supernova remnant OH masers: signposts of cosmic collision. Science 296, 2350–2354 (2002) ADSCrossRefGoogle Scholar
  363. J.S. Warren, J.P. Hughes, C. Badenes, P. Ghavamian et al., Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys. J. 634, 376–389 (2005). arXiv:astro-ph/0507478 ADSCrossRefGoogle Scholar
  364. W.R. Webber, A new estimate of the local interstellar energy density and ionization rate of galactic cosmic rays. Astrophys. J. 506, 329–334 (1998) ADSCrossRefGoogle Scholar
  365. T.C. Weekes, M.F. Cawley, D.J. Fegan, K.G. Gibbs et al., Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342, 379–395 (1989) ADSCrossRefGoogle Scholar
  366. K.W. Weiler, N. Panagia, M.J. Montes, R.A. Sramek, Radio emission from supernovae and gamma-ray bursters. Annu. Rev. Astron. Astrophys. 40, 387–438 (2002) ADSCrossRefGoogle Scholar
  367. B.E. Westerlund, OB stars near the supernova remnant RCW 86. Astron. J. 74, 879–881 (1969) ADSCrossRefGoogle Scholar
  368. R. Willingale, R.G. West, J.P. Pye, G.C. Stewart, ROSAT PSPC observations of the remnant of SN 1006. Mon. Not. R. Astron. Soc. 278, 749–762 (1996) ADSGoogle Scholar
  369. P.F. Winkler, G. Gupta, K.S. Long, The SN 1006 remnant: optical proper motions, deep imaging, distance, and brightness at maximum. Astrophys. J. 585, 324–335 (2003) ADSCrossRefGoogle Scholar
  370. E. Wommer, F. Melia, M. Fatuzzo, Diffuse TeV emission at the galactic centre. Mon. Not. R. Astron. Soc. 387, 987–997 (2008). arXiv:0804.3111 ADSCrossRefGoogle Scholar
  371. N.J. Wright, J.J. Drake, The massive star-forming region Cygnus OB2. I. Chandra catalog of association members. Astrophys. J. Suppl. Ser. 184, 84–99 (2009). arXiv:0908.0549 ADSCrossRefGoogle Scholar
  372. J.H.K. Wu, E.M.H. Wu, C.Y. Hui, P.H.T. Tam et al., Discovery of gamma-ray emission from the supernova remnant Kes 17 with Fermi large area telescope. Astrophys. J. Lett. 740, L12 (2011). arXiv:1108.4084 ADSCrossRefGoogle Scholar
  373. N.E. Yanasak, M.E. Wiedenbeck, R.A. Mewaldt, A.J. Davis et al., Measurement of the secondary radionuclides 10Be, 26Al, 36Cl, 54Mn, and 14C and implications for the galactic cosmic-ray age. Astrophys. J. 563, 768–792 (2001) ADSCrossRefGoogle Scholar
  374. L.R. Yungelson, E.P.J. van den Heuvel, J.S. Vink, S.F. Portegies Zwart et al., On the evolution and fate of super-massive stars. Astron. Astrophys. 477, 223–237 (2008). arXiv:0710.1181 ADSCrossRefGoogle Scholar
  375. F. Yusef-Zadeh, M. Muno, M. Wardle, D.C. Lis, The origin of diffuse X-ray and γ-ray emission from the galactic center region: cosmic-ray particles. Astrophys. J. 656, 847–869 (2007). arXiv:astro-ph/0608710 ADSCrossRefGoogle Scholar
  376. V.N. Zirakashvili, F. Aharonian, Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron. Astrophys. 465, 695–702 (2007). arXiv:astro-ph/0612717 ADSzbMATHCrossRefGoogle Scholar
  377. V.N. Zirakashvili, F.A. Aharonian, Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946. Astrophys. J. 708, 965–980 (2010). arXiv:0909.2285 ADSCrossRefGoogle Scholar
  378. V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008). arXiv:0801.4488 ADSCrossRefGoogle Scholar
  379. K. Zubovas, A.R. King, S. Nayakshin, The milky way’s Fermi bubbles: echoes of the last quasar outburst? Mon. Not. R. Astron. Soc. 415, L21–L25 (2011). arXiv:1104.5443 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E. A. Helder
    • 1
    Email author
  • J. Vink
    • 2
  • A. M. Bykov
    • 3
  • Y. Ohira
    • 4
  • J. C. Raymond
    • 5
  • R. Terrier
    • 6
  1. 1.Department of Astronomy and Astrophysics, 525 Davey LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Astronomical Institute Anton PannekoekUniversiteit van AmsterdamAmsterdamThe Netherlands
  3. 3.Ioffe Institute for Physics and TechnologySt. Petersburg State Politechnical UniversitySt. PetersburgRussia
  4. 4.Theory CenterInstitute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization)TsukubaJapan
  5. 5.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  6. 6.Astroparticule et CosmologieUniversitè Paris7/CNRS/CEAParisFrance

Personalised recommendations