Skip to main content
Log in

Thermospheric Density: An Overview of Temporal and Spatial Variations

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Neutral density shows complicated temporal and spatial variations driven by external forcing of the thermosphere/ionosphere system, internal dynamics, and thermosphere and ionosphere coupling. Temporal variations include abrupt changes with a time scale of minutes to hours, diurnal variation, multi-day variation, solar-rotational variation, annual/semiannual variation, solar-cycle variation, and long-term trends with a time scale of decades. Spatial variations include latitudinal and longitudinal variations, as well as variation with altitude. Atmospheric drag on satellites varies strongly as a function of thermospheric mass density. Errors in estimating density cause orbit prediction error, and impact satellite operations including accurate catalog maintenance, collision avoidance for manned and unmanned space flight, and re-entry prediction. In this paper, we summarize and discuss these density variations, their magnitudes, and their forcing mechanisms, using neutral density data sets and modeling results. The neutral density data sets include neutral density observed by the accelerometers onboard the Challenging Mini-satellite Payload (CHAMP), neutral density at satellite perigees, and global-mean neutral density derived from thousands of orbiting objects. Modeling results are from the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM), and from the NRLMSISE-00 empirical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.R. Bowman, The semiannual thermosphere density variation from 1970 to 2002 between 200–1100 km, AAS 2004-174, in AAS/AIAA Spaceflight Mechanics Meeting, Maui, Hawaii, 8–12 February (2004)

    Google Scholar 

  • B.R. Bowman, F.A. Marcos, M. Kendra, A method for computing accurate daily atmospheric density values from satellite drag data, AAS 2004-173, in AAS/AIAA Spaceflight Mechanics Meeting, Maui, Hawaii, 8–12 February (2004)

    Google Scholar 

  • B.R. Bowman, W.K. Tobiska, F.A. Marcos, C. Valladares, The JB2006 empirical thermospheric density model. J. Atmos. Sol.-Terr. Phys. 70, 774–793 (2007). doi:10.1016/j.jastp.2007.10.002

    Article  ADS  Google Scholar 

  • B.R. Bowman et al., The thermospheric semiannual density response to solar EUV heating. J. Atmos. Sol.-Terr. Phys. (2008). doi:10.1016/j.jastp.2008.04.020

    Google Scholar 

  • S. Bruinsma, J.M. Forbes, R.S. Nerem, X. Zhang, Thermosphere densit response to the 20–21 November 2003 solar and geomagnetic storm from CHAM and GRACE accelerometer data. J. Geophys. Res. 111, A06303 (2006). doi:10.1029/2005JA011284

    Article  Google Scholar 

  • A.G. Burns, T.L. Killeen, W. Wang, R.G. Roble, The solar-cycle-dependent response of the thermosphere to geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 66, 14 (2004)

    Google Scholar 

  • P.C. Chamberlin, T.N. Woods, F.G. Eparvier, Flare Irradiance Spectral Model (FISM): Flare component algorithms and results. Space Weather 6, S05001 (2008). doi:10.1029/2007SW000372

    Article  Google Scholar 

  • R.R. Clark, M.D. Burrageb, S.J. Frankec, A.H. Mansond, C.E. Meekd, N.J. Mitchelle, H.G. Mullerf, Observations of 7-d planetary waves with MLT radars and the UARS-HRDI instrument. J. Atmos. Sol.-Terr. Phys. 64, 1217–1228 (2002)

    Article  ADS  Google Scholar 

  • K. Davies, Ionospheric Radio (Peter Peregrinus, London, 1990)

    Book  Google Scholar 

  • Y. Deng, T.J. Fuller-Rowell, R.A. Akmaev, A.J. Ridley, Impact of the altitudinal Joule heating distribution on the thermosphere. J. Geophys. Res. (2010, submitted)

  • T.R. Detman, Cross validation comparisons of autonomous Ap predictions, in Proceedings of Workshop on the Evaluation of Space Weather Forecasts, ed. by K. Doggett (1996), p. 149, NOAA, ERL, Boulder, Colo

    Google Scholar 

  • B.A. Emery, I.G. Richardson, D.S. Evans, F.J. Rich, Solar wind structure sources and periodicities of auroral electron power over three solar cycles, J. Atmos. Terr. Phys. 71 (2009). doi:10.1016/j.jastp.2008.08.005

  • J.T. Emmert, J.M. Picone, J.L. Lean, S.H. Knowles, Global change in the thermosphere: compelling evidence of a secular decrease in density. J. Geophys. Res. 109, A02301 (2004)

    Article  Google Scholar 

  • J.T. Emmert, J.M. Picone, R.R. Meier, Thermospheric global average density trends 1967–2007, derived from orbits of 5000 near-Earth objects. Geophys. Res. Lett. 35, L05101 (2008). doi:10.1029/2007GL032809

    Article  Google Scholar 

  • J.T. Emmert, A long-term data set of globally averaged thermospheric total mass density. J. Geophys. Res. 114, A06315 (2009). doi:10.1029/2009JA014102

    Article  Google Scholar 

  • J.T. Emmert, J.L. Lean, J.M. Picone, Record-low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett. 37, L12102 (2010). doi:10.1029/2010GL043671

    Article  ADS  Google Scholar 

  • J.T. Emmert, J.M. Picone, Climatology of globally averaged thermospheric mass density. J. Geophys. Res. 115, A09326 (2010). doi:10.1029/2010JA015298

    Article  Google Scholar 

  • J.M. Forbes, S.L. Bruinsma, X. Zhang, J. Oberheide, Surface-exosphere coupling due to thermal tides. Geophys. Res. Lett. 36, L15812 (2009). doi:10.1029/2009GL038748

    Article  Google Scholar 

  • J.M. Forbes, X. Zhang, E.R. Talaat, W. Ward, Nonmigrating diurnal tides in the thermosphere. J. Geophys. Res. A 108(1), 1033 (2003). doi:10.1029/2002JA009262

    Article  ADS  Google Scholar 

  • T.J. Fuller-Rowell, The “thermospheric spoon”: A mechanism for the semiannual density variation. J. Geophys. Res. 103, 3951–3956 (1998)

    Article  ADS  Google Scholar 

  • M.E. Hagan, C. McLandress, J.M. Forbes, Diurnal tidal variability in the upper mesosphere and lower thermosphere. Ann. Geophys. 15, 1176–1186 (1997). doi:10.1007/s00585-997-1176-x

    Article  ADS  Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. D 107(24), 4754 (2002). doi:10.1029/2001JD001236

    Article  ADS  Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. A 108(2), 1062 (2003). doi:10.1029/2002JA009466

    Article  ADS  Google Scholar 

  • A.E. Hedin, Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159–1172 (1991)

    Article  ADS  Google Scholar 

  • R.A. Heelis, J.K. Lowell, R.W. Spiro, A model of the highlatitude ionospheric convection pattern. J. Geophys. Res. 87, 6339–6345 (1982)

    Article  ADS  Google Scholar 

  • L.G. Jacchia, Static diffusion models of the upper atmosphere with empirical temperature profiles. Smithson. Contrib. Astrophys. 8, 215–257 (1965)

    ADS  Google Scholar 

  • L.G. Jacchia, Semiannual variation in the heteorosphere: A reappraisal. J. Geophys. Res. 76, 4602–4607 (1971)

    Article  ADS  Google Scholar 

  • C. Jacobi, R. Schminder, D. Kürschner, Planetary-wave activity obtained from long-period (2–18 days) variations of mesopause region winds over Central Europe (52°N, 15°E), J. Atmos. Sol.-Terr. Phys. 60(1), 81–93 (1998)

    Article  ADS  Google Scholar 

  • G.M. Keating, E.J. Prior, The winter He bulge. Space Res. 8, 982 (1968)

    Google Scholar 

  • G.M. Keating, R.H. Tolson, M.S. Bradford, Evidence of long-term global decline in the Earth’s thermospheric densities apparently related to anthropogenic effects. Geophys. Res. Lett. 27, 1523–1526 (2000)

    Article  ADS  Google Scholar 

  • D.J. Knipp, W.K. Tobiska, B.A. Emery, Direct and indirect thermosphere heating sources for solar cycle 21–23. Sol. Phys. 224, 495–505 (2004)

    Article  ADS  Google Scholar 

  • J. Laštovička, R.A. Akmaev, G. Beig, J. Bremer, J.T. Emmert, Global change in the upper atmosphere. Science 314, 1253–1254 (2006)

    Article  Google Scholar 

  • J.L. Lean, J.T. Emmert, J.M. Picone, R.R. Meier, Global and regional trends in ionospheric total electron content. J. Geophys. Res. 116, A00H04 (2011). doi:10.1029/2010JA016378

    Article  Google Scholar 

  • J. Lei, J.P. Thayer, J.M. Forbes, E.K. Sutton, R.S. Nerem, Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys. Res. Lett. 35, L10109 (2008). doi:10.1029/2008GL033875

    Article  ADS  Google Scholar 

  • H. Liu, H. Lühr, Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res. 110, A09S29 (2005). doi:10.1029/2004JA010908

    Article  ADS  Google Scholar 

  • H. Liu, H. Lühr, S. Watanabe, W. Köhler, C. Manoj, Contrasting behavior of the thermosphere and ionosphere in response to the 28 October 2003 solar flare. J. Geophys. Res. 112, A07305 (2007a). doi:10.1029/2007JA012313

    Article  Google Scholar 

  • H. Liu, H. Lühr, S. Watanabe, Climatology of the equatorial thermospheric mass density anomaly. J. Geophys. Res. 112, A05305 (2007b). doi:10.1029/2006JA012199

    Article  Google Scholar 

  • R. Liu, H. Lühr, E. Doornbos, S.-Y. Ma, Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field. Ann. Geophys. 28, 1633–1645 (2010). doi:10.5194/angeo-28-1633-2010

    Article  ADS  Google Scholar 

  • R. Liu, S.-Y. Ma, H. Lühr, Predicting storm-time thermospheric mass density variations at CHAMP and GRACE altitudes. Ann. Geophys. 29, 443–453 (2011). doi:10.5194/angeo-29-443-2011

    Article  ADS  Google Scholar 

  • H. Lühr, M. Rother, W. Köhler, P. Ritter, L. Grunwaldt, Thermospheric up-welling in the cusp region: Evidence from CHAMP observations. Geophys. Res. Lett. 31, L06805 (2004). doi:10.1029/2003GL019314

    Article  Google Scholar 

  • F.A. Marcos, J.O. Wise, M.J. Kendra, N.J. Grossbard, B.R. Bowman, Detection of a long-term decrease in thermospheric neutral density. Geophys. Res. Lett. 32, L04103 (2005). doi:10.1029/2004GL021269

    Article  Google Scholar 

  • M. Mendillo et al., Behavior of the ionospheric F region during the great solar flare of August 7, 1972. J. Geophys. Res. 79(4), 665–672 (1974)

    Article  ADS  Google Scholar 

  • A.P. Mitra, Ionospheric Effects of Solar Flares (Reidel, Boston, 1974)

    Book  Google Scholar 

  • S. Müller, H. Lühr, S. Rentz, Solar and magnetospheric forcing of the low latitude thermospheric mass density as observed by CHAMP. Ann. Geophys. 27, 2087–2099 (2009)

    Article  ADS  Google Scholar 

  • H.K. Paetzold, H. Zschörner, An annual and a semiannual variation of the upper air density. Pure Appl. Geophys. 48, 85–92 (1961)

    Article  Google Scholar 

  • D.J. Pawlowski, A.J. Ridley, Modeling the thermospheric response to solar flares. J. Geophys. Res. 113, A10309 (2008). doi:10.1029/2008JA013182

    Article  ADS  Google Scholar 

  • J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. A 107(12), 1468 (2002). doi:10.1029/2002JA009430

    Article  ADS  Google Scholar 

  • G.W. Prölss, Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy. Surv. Geophys. 32, 101–195 (2011). doi:10.1007/s10712-010-9104-0

    Article  Google Scholar 

  • L. Qian, R.G. Roble, S.C. Solomon, T.J. Kane, Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophys. Res. Lett. 33, L23705 (2006). doi:10.1029/2006GL027185

    Article  ADS  Google Scholar 

  • L. Qian, S.C. Solomon, R.G. Roble, B.R. Bowman, F.A. Marcos, Thermospheric neutral density response to solar forcing. Adv. Space Res. 42(5), 926–932 (2008). doi:10.1016/j.asr.2007.10.019

    Article  ADS  Google Scholar 

  • L. Qian, S.C. Solomon, T.J. Kane, Seasonal variation of thermospheric density and composition. J. Geophys. Res. 114, A01312 (2009). doi:10.1029/2008JA013643

    Article  Google Scholar 

  • L. Qian, A.G. Burns, P.C. Chamberlin, S.C. Solomon, Flare location on the solar disk: Modeling the thermosphere and ionosphere response. J. Geophys. Res. 115, A09311 (2010a). doi:10.1029/2009JA015225

    Article  Google Scholar 

  • L. Qian, S.C. Solomon, M.G. Mlynczak, Model simulation of thermospheric response to recurrent geomagnetic forcing. J. Geophys. Res. 115, A10301 (2010b). doi:10.1029/2010JA015309

    Article  ADS  Google Scholar 

  • L. Qian, A.G. Burns, P.C. Chamberlin, S.C. Solomon, Variability of thermosphere and ionosphere responses to solar flares. J. Grophys. Res. (2011, accepted)

  • C.A. Reber, J.E. Cooley, D.N. Harpold, Upper atmosphere hydrogen and helium measurements from the Explorer 32 satellite. Space Res. 8, 993 (1968)

    Google Scholar 

  • C. Reigber, H. Lühr, P. Schwintzer, CHAMP mission status. Adv. Space Res. 30(2), 129–134 (2002)

    Article  ADS  Google Scholar 

  • P.G. Richards, J.A. Fennelly, D.G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. 99, 8981–8992 (1994)

    Article  ADS  Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992)

    Article  ADS  Google Scholar 

  • H. Rishbeth, A greenhouse effect in the ionosphere? Planet. Space Sci. 38, 945–948 (1990)

    Article  ADS  Google Scholar 

  • H. Rishbeth, R.G. Roble, Cooling of the upper atmosphere by enhanced greenhouse gases—modelling of thermospheric and ionospheric effects. Planet. Space Sci. 40, 1011–1026 (1992)

    Article  ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, An auroral model for the NCAR thermosphere general circulation model (TGCM). Ann. Geophys. A 5(6), 369–382 (1987)

    ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A.D. Richmond, R.E. Dickinson, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325 (1988). doi:10.1029/GL015i012p01325

    Article  ADS  Google Scholar 

  • R.G. Roble, R.E. Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and lower thermosphere? Geophys. Res. Lett. 16, 1441–1444 (1989)

    Article  ADS  Google Scholar 

  • C.T. Russell, R.L. McPherron, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, (1), 92–108 (1973)

    Article  ADS  Google Scholar 

  • S.C. Solomon, L. Qian, Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. 110, A10306 (2005). doi:10.1029/2005JA011160

    Article  ADS  Google Scholar 

  • S.C. Solomon, T.N. Woods, L.V. Didkovsky, J.T. Emmert, L. Qian, Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett. 37, L16103 (2010). doi:10.1029/2010GL044468

    Article  ADS  Google Scholar 

  • S.C. Solomon, L. Qian, L.V. Didkovsky, R.A. Viereck, T.N. Woods, Causes of low thermospheric density during the 2007–2009 solar minimum. J. Geophys. Res. 116 (2011). doi:10.1029/2011JA016508

  • E.K. Sutton, J.M. Forbes, R.S. Nerem, Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res. 110, A09S40 (2005). doi:10.1029/2004JA010985

    Article  ADS  Google Scholar 

  • M. Temmer, B. Vrsnak, A.M. Veronig, Periodic appearance of coronal holes and the related variation of solar wind parameters. Sol. Phys. 241, 371–383 (2007)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, A.L.C. Gonzalez, F. Tang, J.K. Arballo, M. Okada, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. A 100(11), 21717–21733 (1995)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani et al., Extreme solar EUV flares and ICMEs and resultant extreme ionospheric effects: comparison of the Halloween 2003 and the Bastille Day events. Radio Sci. 41, RS5S07 (2006). doi:10.1029/2005RS003331

    Article  Google Scholar 

  • R.L. Walterscheid, The semiannual oscillation in the thermosphere as a conduction mode. J. Geophys. Res. 87, 10527–10535 (1982)

    Article  ADS  Google Scholar 

  • W. Wang, A.G. Burns, M. Wiltberger, S.C. Solomon, T.L. Killeen, Altitude variations of the horizontal thermospheric winds during geomagnetic storms. J. Geophys. Res. 113, A02301 (2008). doi:10.1029/2007JA012374

    Article  Google Scholar 

  • G.R. Wilson, D.R. Weimer, J.O. Wise, F.A. Marcos, Response of the thermosphere to Joule heating and particle precipitation. J. Geophys. Res. 111, A10314 (2006). doi:10.1029/2005JA011274

    Article  ADS  Google Scholar 

  • T.N. Woods, F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, D.L. Woodraska, Solar EUV Experiment (SEE): Mission overview and first results. J. Geophys. Res. 110, A01312 (2005). doi:10.1029/2004JA010765

    Article  Google Scholar 

  • D.H. Zhang, Z. Xiao, Study of ionospheric response to the 4B flare on 28 October 2003 using Internation GPS Service network data. J. Geophys. Res. 110, A03307 (2005). doi:10.1029/2004JA010738

    Article  Google Scholar 

  • D.H. Zhang, X.H. Mo, L. Cai, W. Zhang, M. Feng, Y.Q. Hao, Z. Xiao, Impact factor for the ionospheric total electron content response to solar flare irradiation. J. Geophys. Res. 116, A04311 (2011). doi:10.1029/2010JA016089

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, L., Solomon, S.C. Thermospheric Density: An Overview of Temporal and Spatial Variations. Space Sci Rev 168, 147–173 (2012). https://doi.org/10.1007/s11214-011-9810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9810-z

Keywords

Navigation