Skip to main content

High-Latitude Thermospheric Density and Wind Dependence on Solar and Magnetic Activity

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Processes in the high-latitude thermosphere are strongly controlled by the activity of the sun and by the geomagnetic field geometry. The CHAMP satellite, with its sensitive tri-axial accelerometer, provided detailed information about thermospheric dynamics over its mission life-time (2000–2010), thus contributing significantly to the CAWSES (Climate And Weather of the Sun-Earth System) programme. In this chapter, studies on thermospheric winds and density anomalies at high magnetic latitudes are presented. Thermospheric winds above the poles are directed predominantly from day to night side. Observations, however, reveal a distinct difference between winds on the dawn and dusk sides at auroral latitudes. While on the dawn side fast zonal winds towards night are prevailing, an anti-cyclonic vortex is formed on the dusk side. For the explanation of these local time dependent features various thermodynamic and electrodynamic influences have to be considered. As an example for mass density variation the cusp-related density anomaly is studied. The amplitude of this prominent local peak in mass density is influenced by the level of solar flux (F10.7) and by the solar wind input into the magnetosphere as quantified by the electric field caused by reconnection. A prerequisite for the appearance of density anomalies is the presence of soft-energy particle precipitation. By combining CHAMP and EISCAT measurements, it has been shown that Joule heating, fuelled predominantly by small-scale field-aligned currents (FACs), causes a strong increase in temperature at altitudes below 200 km. As a consequence molecular-rich air is up-welling. A density anomaly is recorded at 400 km altitude. Combining different observations and numerical model results provides a plausible chain of processes leading to the observed cusp-related density anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Clemmons, J. H., Hecht, J. H., Salem, D. R., & Strickland, D. J. (2008). Thermospheric density in the Earth’s magnetic cusp as observed by the Streak mission. Geophysical Research Letters, 35, L24103. doi:10.1029/2008GL035972.

    Article  Google Scholar 

  • Crowley, G., Reynolds, A., Thayer, J. P., Lei, J., Paxton, L. J., Christensen, A. B., Zhang, Y., Meier, R. R., & Strickland, D. J. (2008). Periodic modulations in thermospheric composition by solar wind high speed streams. Geophysical Research Letters, 35, L21106. doi:10.1029/2008GL035745.

    Article  Google Scholar 

  • Demars, H. G., & Schunk, R. W. (2007). Thermospheric response to ion heating in the dayside cusp. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 649–660. doi:10.1016/j.jastp.2006.11.002.

    Article  Google Scholar 

  • Doornbos, E., van den IJssel, J., Lühr, H., Förster, M., & Koppenwallner, G. (2010). Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. Journal of Spacecraft and Rockets, 47(4), 580–589. doi:10.2514/1.48114.

    Article  Google Scholar 

  • Emmert, J. T. (2009). A long-term data set of globally averaged thermospheric total mass density. Journal of Geophysical Research, 114, A09326. doi:10.1029/2009JA014102.

    Google Scholar 

  • Emmert, J. T., & Picone, J. M. (2010). Climatology of globally averaged thermospheric mass density. Journal of Geophysical Research, 115, A09326. doi:10.1029/2010JA015298.

    Article  Google Scholar 

  • Förster, M., Rentz, S., Köhler, W., Liu, H., & Haaland, S. E. (2008). IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements. Annals of Geophysics, 26, 1581–1595. doi:10.5194/angeo-26-1581-2008.

    Article  Google Scholar 

  • Fuller-Rowell, T. J., & Rees, D. (1984). Interpretation of an anticipated long-lived vortex in the lower thermosphere following simulation of an isolated substorm. Planetary and Space Science, 32, 69–86.

    Article  Google Scholar 

  • Liu, H., Lühr, H., Henize, V., & Köhler, W. (2005). Global distribution of the thermospheric total mass density derived from CHAMP. Journal of Geophysical Research, 110, A04301. doi:10.1029/2004JA010741.

    Article  Google Scholar 

  • Liu, H., Lühr, H., Watanabe, S., Köhler, W., Henize, V., & Visser, P. (2006). Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies. Journal of Geophysical Research, 111, A07307. doi:10.1029/2005JA011415.

    Article  Google Scholar 

  • Liu, H., Watanabe, S., & Kondo, T. (2009). Fast thermospheric wind jet at the Earth’s dip equator. Geophysical Research Letters, 36, L08103. doi:10.1029/2009GL037377.

    Article  Google Scholar 

  • Lockwood, M., Denig, W. F., Farmer, A. D., Davda, V. N., Cowley, S. W. H., & Lühr, H. (1993). Ionospheric signatures of pulsed reconnection at the Earth’s magnetopause. Nature, 361, 424. doi:10.1038/361424a0.

    Article  Google Scholar 

  • Lühr, H., Rother, M., Köhler, W., Ritter, P., & Grunwaldt, L. (2004). Thermospheric up-welling in the cusp region: Evidence from CHAMP observations. Geophysical Research Letters, 31, L06805. doi:10.1029/2003GL019314.

    Article  Google Scholar 

  • Lühr, H., Rentz, S., Ritter, P., Liu, H., & Häusler, K. (2007). Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Annals of Geophysics, 25, 1093–1101. doi:10.5194/angeo-25-1093-2007.

    Article  Google Scholar 

  • Millward, G. H., Moffett, R. J., Balmforth, H. F., & Rodger, A. S. (1999). Modeling the ionospheric effects of ion and electron precipitation in the cusp. Journal of Geophysical Research, 104(A11), 24603–24612. doi:10.1029/1999JA900249.

    Article  Google Scholar 

  • Prölss, G. W. (2004). Physics of the Earth’s space environment: an introduction. Berlin: Springer.

    Book  Google Scholar 

  • Prölss, G. W. (2011). Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy. Surveys in Geophysics, 32, 101–195. doi:10.1007/s10712-010-9104-0.

    Article  Google Scholar 

  • Reigber, C., Lühr, H., & Schwintzer, P. (2002). CHAMP mission status. Advances in Space Research, 30, 129–134. doi:10.1016/S0273-1177(02)00276-4.

    Article  Google Scholar 

  • Rentz, S. (2009). The upper atmospheric fountain effect in the polar cusp region. Ph.D. thesis, TU Braunschweig. doi:10.2312/GFZ.b103-09050.

  • Rentz, S., & Lühr, H. (2008). Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Annals of Geophysics, 26, 2807–2823. doi:10.5194/angeo-26-2807-2008.

    Article  Google Scholar 

  • Rishbeth, H. (2002). Whatever happened to superrotation? Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1351–1360. doi:10.1016/S1364-6826(02)00097-4.

    Article  Google Scholar 

  • Ritter, P., Lühr, H., & Doornbos, E. (2010). Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Annals of Geophysics, 2008, 1207–1220. doi:10.5194/angeo-28-1207-2010.

    Article  Google Scholar 

  • Rother, M., Schlegel, K., & Lühr, H. (2007). CHAMP observation of intense kilometer-scale field-aligned currents, evidence for an ionospheric Alfvén resonator. Annals of Geophysics, 25, 1603–1615. doi:10.5194/angeo-25-1603-2007.

    Article  Google Scholar 

  • Schlegel, K., Lühr, H., St.-Maurice, J.-P., Crowley, C., & Hackert, G. (2005). Thermospheric density structure over the polar regions observed with CHAMP. Annals of Geophysics, 23, 1659–1672. doi:10.5194/angeo-23-1659-2005.

    Article  Google Scholar 

  • Thayer, J. P., Killeen, T. L., McCormac, F. G., Tschan, C. R., Ponthieu, J.-J., & Spencer, N. W. (1987). Thermospheric neutral wind signatures dependent on the east-west component of the interplanetary magnetic field for Northern and Southern Hemispheres, as measured from Dynamics Explorer-2. Annals of Geophysics, 5, 363–368.

    Google Scholar 

  • Vogt, J. (2002). Alfvén wave coupling in the auroral current circuit. Surveys in Geophysics, 23, 335–377. doi:10.1023/A:1015597724324.

    Article  Google Scholar 

  • Wang, H., Lühr, H., Häusler, K., & Ritter, P. (2011). Effect of subauroral polarization streams on the thermosphere: A statistical study. Journal of Geophysical Research, 116, A03312. doi:10.1029/2010JA016236.

    Article  Google Scholar 

  • Watermann, J., Stauning, P., Lühr, H., Newell, P. T., Christiansen, F., & Schlegel, K. (2009). Are small-scale field-aligned currents and magnetosheath-like particle precipitation signatures of the same low-altitude cusp? Advances in Space Research, 43, 41–46. doi:10.1016/j.asr.2008.03.031.

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Köhler for pre-processing the accelerometer data. The operational support of the CHAMP mission by the German Aerospace Centre (DLR) and the financial support for the data processing by the Federal Ministry of Education and Research (BMBF), as part of the Geotechnology Programme, are gratefully acknowledged. EISCAT is an international association supported by research organisations in China (CRIRP), Finland (SA), France (CNRS, till end 2006), Germany (DFG), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (PPARC). One the authors, S. Marker (previously Rentz), was supported by the Deutsche Forschungsgemeinschaft DFG through the DFG Priority Programme “CAWSES”, SPP 1176 (Lu 446/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Lühr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lühr, H., Marker, S. (2013). High-Latitude Thermospheric Density and Wind Dependence on Solar and Magnetic Activity. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_11

Download citation

Publish with us

Policies and ethics