Skip to main content
Log in

Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel’dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Achterberg, Y.A. Gallant, J.G. Kirk, A.W. Guthmann, Particle acceleration by ultrarelativistic shocks: theory and simulations. Mon. Not. R. Astron. Soc. 328, 393–408 (2001). doi:10.1046/j.1365-8711.2001.04851.x

    ADS  Google Scholar 

  • M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, R.D. Blandford, P. Blasi, E.D. Bloom, E. Bonamente, GeV gamma-ray flux upper limits from clusters of galaxies. Astrophys. J. Lett. 717, 71–78 (2010). doi:10.1088/2041-8205/717/1/L71

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, G. Anton, U. Barres de Almeida, A.R. Bazer-Bachi, Y. Becherini, B. Behera, K. Bernlöhr, C. Boisson, A. Bochow, V. Borrel, E. Brion, J. Brucker, P. Brun, R. Bühler, T. Bulik, I. Büsching, T. Boutelier, P.M. Chadwick, A. Charbonnier, R.C.G. Chaves, A. Cheesebrough, Constraints on the multi-TeV particle population in the Coma galaxy cluster with HESS observations. Astron. Astrophys. 502, 437–443 (2009). doi:10.1051/0004-6361/200912086

    ADS  Google Scholar 

  • M. Ajello, P. Rebusco, N. Cappelluti, O. Reimer, H. Böhringer, J. Greiner, N. Gehrels, J. Tueller, A. Moretti, Galaxy clusters in the Swift/Burst alert telescope era: hard X-rays in the intracluster medium. Astrophys. J. 690, 367–388 (2009). doi:10.1088/0004-637X/690/1/367

    ADS  Google Scholar 

  • E. Amato, P. Blasi, Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence. Mon. Not. R. Astron. Soc. 371, 1251–1258 (2006). doi:10.1111/j.1365-2966.2006.10739.x

    ADS  Google Scholar 

  • W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 11 (1977), p. 132

    Google Scholar 

  • J. Bagchi, F. Durret, G.B.L. Neto, S. Paul, Giant ringlike radio structures around galaxy cluster Abell 3376. Science 314, 791–794 (2006). doi:10.1126/science.1131189

    ADS  Google Scholar 

  • N. Battaglia, C. Pfrommer, J.L. Sievers, J.R. Bond, T.A. Enßlin, Exploring the magnetized cosmic web through low-frequency radio emission. Mon. Not. R. Astron. Soc. 393, 1073–1089 (2009). doi:10.1111/j.1365-2966.2008.14136.x

    ADS  Google Scholar 

  • M.W. Bautz, E.D. Miller, J.S. Sanders, K.A. Arnaud, R.F. Mushotzky, F.S. Porter, K. Hayashida, J.P. Henry, J.P. Hughes, M. Kawaharada, K. Makashima, M. Sato, T. Tamura, Suzaku observations of Abell 1795: Cluster emission to r 200. Publ. Astron. Soc. Jpn. 61, 1117 (2009)

    ADS  Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978a)

    ADS  Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978b)

    ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004). doi:10.1111/j.1365-2966.2004.08097.x

    ADS  Google Scholar 

  • A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001). doi:10.1046/j.1365-8711.2001.04063.x

    ADS  Google Scholar 

  • E. Belsole, J. Sauvageot, G.W. Pratt, H. Bourdin, Merging clusters of galaxies observed with XMM-Newton. Adv. Space Res. 36, 630–635 (2005). doi:10.1016/j.asr.2005.01.029

    ADS  Google Scholar 

  • E.W. Bertschinger, Nonlinear growth of perturbations in an Einstein-De Sitter cosmology. PhD thesis, Princeton University, NJ (1984)

  • R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks—a theory of cosmic-ray origin. Phys. Rep. 154, 1 (1987). doi:10.1016/0370-1573(87)90134-7

    ADS  Google Scholar 

  • R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, 29–32 (1978). doi:10.1086/182658

    ADS  Google Scholar 

  • H. Böhringer, N. Werner, X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010). doi:10.1007/s00159-009-0023-3

    ADS  Google Scholar 

  • A. Bonafede, G. Giovannini, L. Feretti, F. Govoni, M. Murgia, Double relics in Abell 2345 and Abell 1240. Spectral index and polarization analysis. Astron. Astrophys. 494, 429–442 (2009). doi:10.1051/0004-6361:200810588

    ADS  Google Scholar 

  • S. Borgani, A. Kravtsov, Cosmological Simulations of Galaxy Clusters (2009)

    Google Scholar 

  • S. Borgani, A. Diaferio, K. Dolag, S. Schindler, Thermodynamical properties of the ICM from hydrodynamical simulations. Space Sci. Rev. 134, 269–293 (2008). doi:10.1007/s11214-008-9317-4

    ADS  Google Scholar 

  • M. Brüggen, S. Heinz, E. Roediger, M. Ruszkowski, A. Simionescu, Shock heating by Fanaroff–Riley type I radio sources in galaxy clusters. Mon. Not. R. Astron. Soc. 380, 67–70 (2007). doi:10.1111/j.1745-3933.2007.00351.x

    ADS  Google Scholar 

  • G. Brunetti, A. Lazarian, Acceleration of primary and secondary particles in galaxy clusters by compressible MHD turbulence: from radio haloes to gamma-rays. Mon. Not. R. Astron. Soc. 410, 127–142 (2011). doi:10.1111/j.1365-2966.2010.17457.x

    ADS  Google Scholar 

  • G. Brunetti, P. Blasi, R. Cassano, S. Gabici, High energy emission from galaxy clusters and particle acceleration due to MHD turbulence, in American Institute of Physics Conference Series, ed. by D. Bastieri, R. Rando. American Institute of Physics Conference Series, vol. 1112 (2009), pp. 129–137. doi:10.1063/1.3125773

    Google Scholar 

  • A.M. Bykov, Multi-fluid shocks in clusters of galaxies: entropy, σ v T,MT and L X T scalings. Adv. Space Res. 36, 738–746 (2005). doi:10.1016/j.asr.2005.01.052

    ADS  Google Scholar 

  • A.M. Bykov, Y.A. Uvarov, Electron kinetics in collisionless shock waves. J. Exp. Theor. Phys. 88, 465–475 (1999)

    ADS  Google Scholar 

  • A.M. Bykov, K. Dolag, F. Durret, Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008a). doi:10.1007/s11214-008-9312-9

    ADS  Google Scholar 

  • A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52 (2011). doi:10.1111/j.1365-2966.2010.17421.x

    ADS  Google Scholar 

  • A.M. Bykov, F.B.S. Paerels, V. Petrosian, Equilibration processes in the warm-hot intergalactic medium. Space Sci. Rev. 134, 141–153 (2008b). doi:10.1007/s11214-008-9309-4

    ADS  Google Scholar 

  • A. Cattaneo, S.M. Faber, J. Binney, A. Dekel, J. Kormendy, R. Mushotzky, A. Babul, P.N. Best, M. Brüggen, A.C. Fabian, C.S. Frenk, A. Khalatyan, H. Netzer, A. Mahdavi, J. Silk, M. Steinmetz, L. Wisotzki, The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009). doi:10.1038/nature08135

    ADS  Google Scholar 

  • E. Churazov, W. Forman, C. Jones, R. Sunyaev, H. Böhringer, XMM-Newton observations of the Perseus cluster—II. Evidence for gas motions in the core. Mon. Not. R. Astron. Soc. 347, 29–35 (2004). doi:10.1111/j.1365-2966.2004.07201.x

    ADS  Google Scholar 

  • K. Dolag, A.M. Bykov, A. Diaferio, Non-thermal processes in cosmological simulations. Space Sci. Rev. 134, 311–335 (2008). doi:10.1007/s11214-008-9319-2

    ADS  Google Scholar 

  • L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983). doi:10.1088/0034-4885/46/8/002

    ADS  Google Scholar 

  • F. Durret, J.S. Kaastra, J. Nevalainen, T. Ohashi, N. Werner, Soft X-ray and extreme ultraviolet excess emission from clusters of galaxies. Space Sci. Rev. 134, 51–70 (2008). doi:10.1007/s11214-008-9313-8

    ADS  Google Scholar 

  • D.C. Ellison, G.P. Double, Diffusive shock acceleration in unmodified relativistic, oblique shocks. Astropart. Phys. 22, 323–338 (2004). doi:10.1016/j.astropartphys.2004.08.005

    ADS  Google Scholar 

  • S. Ettori, S. Molendi, X-Ray Observations of Cluster Outskirts: Current Status and Future Prospects (2010)

    Google Scholar 

  • L. Feretti, H. Boehringer, G. Giovannini, D. Neumann, The radio and X-ray properties of Abell 2255 Astron. Astrophys. 317, 432–440 (1997)

    ADS  Google Scholar 

  • C. Ferrari, F. Govoni, S. Schindler, A.M. Bykov, Y. Rephaeli, Observations of extended radio emission in clusters. Space Sci. Rev. 134, 93–118 (2008). doi:10.1007/s11214-008-9311-x

    ADS  Google Scholar 

  • A. Finoguenov, C.L. Sarazin, K. Nakazawa, D.R. Wik, T.E. Clarke, XMM-Newton observation of the northwest radio relic region in A3667. Astrophys. J. 715, 1143–1151 (2010). doi:10.1088/0004-637X/715/2/1143

    ADS  Google Scholar 

  • D.C. Fox, A. Loeb, Do the electrons and ions in X-ray clusters share the same temperature? Astrophys. J. 491, 459–466 (1997). doi:10.1086/305007

    ADS  Google Scholar 

  • S.R. Furlanetto, A. Loeb, Intergalactic magnetic fields from quasar outflows. Astrophys. J. 556, 619–634 (2001)

    ADS  Google Scholar 

  • S. Gabici, P. Blasi, Nonthermal radiation from clusters of galaxies: the role of merger shocks in particle acceleration. Astrophys. J. 583, 695–705 (2003). doi:10.1086/345429

    ADS  Google Scholar 

  • M.R. George, A.C. Fabian, J.S. Sanders, A.J. Young, H.R. Russell, X-ray observations of the galaxy cluster PKS0745-191: to the virial radius, and beyond. Mon. Not. R. Astron. Soc. 395, 657–666 (2009). doi:10.1111/j.1365-2966.2009.14547.x

    ADS  Google Scholar 

  • S. Giacintucci, T. Venturi, G. Macario, D. Dallacasa, G. Brunetti, M. Markevitch, R. Cassano, S. Bardelli, R. Athreya, Shock acceleration as origin of the radio relic in A 521? Astron. Astrophys. 486, 347–358 (2008). doi:10.1051/0004-6361:200809459

    ADS  Google Scholar 

  • G. Giovannini, L. Feretti, C. Stanghellini, The Coma cluster radio source 1253 + 275, revisited. Astron. Astrophys. 252, 528–537 (1991)

    ADS  Google Scholar 

  • G. Giovannini, A. Bonafede, L. Feretti, F. Govoni, M. Murgia, The diffuse radio filament in the merging system ZwCl 2341.1+0000. Astron. Astrophys. 511, 5 (2010). doi:10.1051/0004-6361/200913983

    ADS  Google Scholar 

  • F. Govoni, L. Feretti, G. Giovannini, H. Böhringer, T.H. Reiprich, M. Murgia, Radio and X-ray diffuse emission in six clusters of galaxies. Astron. Astrophys. 376, 803–819 (2001). doi:10.1051/0004-6361:20011016

    ADS  Google Scholar 

  • M. Hoeft, M. Brüggen, Radio signature of cosmological structure formation shocks. Mon. Not. R. Astron. Soc. 375, 77–91 (2007). doi:10.1111/j.1365-2966.2006.11111.x

    ADS  Google Scholar 

  • M. Hoeft, M. Brüggen, G. Yepes, S. Gottlöber, A. Schwope, Diffuse radio emission from clusters in the MareNostrum Universe simulation. Mon. Not. R. Astron. Soc. 391, 1511–1526 (2008). doi:10.1111/j.1365-2966.2008.13955.x

    ADS  Google Scholar 

  • F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991). doi:10.1007/BF01206003

    ADS  Google Scholar 

  • H. Kang, T.W. Jones, Self-similar evolution of cosmic-ray-modified quasi-parallel plane shocks. Astropart. Phys. 28, 232–246 (2007). doi:10.1016/j.astropartphys.2007.05.007

    ADS  Google Scholar 

  • H. Kang, D. Ryu, Diffusive shock acceleration in test-particle regime. Astrophys. J. 721, 886 (2010)

    ADS  Google Scholar 

  • H. Kang, D. Ryu, T.W. Jones, Cluster accretion shocks as possible acceleration sites for ultra-high-energy protons below the Greisen cutoff. Astrophys. J. 456, 422 (1996). doi:10.1086/176666

    ADS  Google Scholar 

  • H. Kang, T.W. Jones, U.D.J. Gieseler, Numerical studies of CR injection. Astrophys. J. 579, 337 (2002)

    ADS  Google Scholar 

  • H. Kang, D. Ryu, T.W. Jones, Self-similar evolution of cosmic-ray modified shocks: the cosmic-ray spectrum. Astrophys. J. 695, 1273–1288 (2009). doi:10.1088/0004-637X/695/2/1273

    ADS  Google Scholar 

  • H. Kang, D. Ryu, R. Cen, J.P. Ostriker, Cosmological shock waves in the large-scale structure of the Universe: nongravitational effects. Astrophys. J. 669, 729–740 (2007). doi:10.1086/521717

    ADS  Google Scholar 

  • T.N. Kato, H. Takabe, Nonrelativistic collisionless shocks in weakly magnetized electron-ion plasmas: two-dimensional particle-in-cell simulation of perpendicular shock (2010)

  • J.C. Kempner, E.L. Blanton, T.E. Clarke, T.A. Enßlin, M. Johnston-Hollitt, L. Rudnick, Conference note: a taxonomy of extended radio sources in clusters of galaxies, in The Riddle of Cooling Flows in Galaxies and Clusters of Galaxies, ed. by T. Reiprich, J. Kempner, N. Soker (2004), p. 335

    Google Scholar 

  • U. Keshet, E. Waxman, Energy spectrum of particles accelerated in relativistic collisionless shocks. Phys. Rev. Lett. 94(11), 111102 (2005). doi:10.1103/PhysRevLett.94.111102

    ADS  Google Scholar 

  • U. Keshet, E. Waxman, A. Loeb, V. Springel, L. Hernquist, Gamma rays from intergalactic shocks. Astrophys. J. 585, 128–150 (2003). doi:10.1086/345946

    ADS  Google Scholar 

  • R.A. Krivonos, A.A. Vikhlinin, M.L. Markevitch, M.N. Pavlinsky, A possible shock wave in the intergalactic medium of the cluster of galaxies A754. Astron. Lett. 29, 425–428 (2003). doi:10.1134/1.1589859

    ADS  Google Scholar 

  • G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977)

    ADS  Google Scholar 

  • R.M. Kulsrud, R. Cen, J.P. Ostriker, D. Ryu, The protogalactic origin for cosmic magnetic fields. Astrophys. J. 480, 481 (1997)

    ADS  Google Scholar 

  • A. Lazarian, Enhancement and suppression of heat transfer by MHD turbulence. Astrophys. J. Lett. 645, 25–28 (2006). doi:10.1086/505796

    ADS  Google Scholar 

  • M. Lueker, C.L. Reichardt, K.K. Schaffer, O. Zahn, P.A.R. Ade, K.A. Aird, B.A. Benson, L.E. Bleem, J.E. Carlstrom, C.L. Chang, H. Cho, T.M. Crawford, A.T. Crites, T. de Haan, M.A. Dobbs, E.M. George, N.R. Hall, N.W. Halverson, G.P. Holder, W.L. Holzapfel, J.D. Hrubes, M. Joy, R. Keisler, L. Knox, A.T. Lee, E.M. Leitch, J.J. McMahon, J. Mehl, S.S. Meyer, J.J. Mohr, T.E. Montroy, S. Padin, T. Plagge, C. Pryke, J.E. Ruhl, L. Shaw, E. Shirokoff, H.G. Spieler, B. Stalder, Z. Staniszewski, A.A. Stark, K. Vanderlinde, J.D. Vieira, R. Williamson, Measurements of secondary cosmic microwave background anisotropies with the south pole telescope. Astrophys. J. 719, 1045–1066 (2010). doi:10.1088/0004-637X/719/2/1045

    ADS  Google Scholar 

  • M.A. Malkov, L. O’C Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001). doi:10.1088/0034-4885/64/4/201

    ADS  Google Scholar 

  • M. Markevitch, The L X-T relation and temperature function for nearby clusters revisited. Astrophys. J. 504, 27 (1998). doi:10.1086/306080

    ADS  Google Scholar 

  • M. Markevitch, A. Vikhlinin, Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1 (2007)

    ADS  Google Scholar 

  • M. Markevitch, A.H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C. Jones, W. Tucker, A textbook example of a bow shock in the merging galaxy cluster 1E 0657-56. Astrophys. J. Lett. 567, 27–31 (2002). doi:10.1086/339619

    ADS  Google Scholar 

  • M. Markevitch, F. Govoni, G. Brunetti, D. Jerius, Bow shock and radio halo in the merging cluster A520. Astrophys. J. 627, 733–738 (2005). doi:10.1086/430695

    ADS  Google Scholar 

  • M.V. Medvedev, L.O. Silva, M. Fiore, R.A. Fonseca, W.B. Mori, Generation of magnetic fields in cosmological shocks. J. Korean Astron. Soc. 37, 533–541 (2004)

    ADS  Google Scholar 

  • R. Mewe, Ionization of hot plasmas, in NATO ASIC Proc. 300: Physical Processes in Hot Cosmic Plasmas, ed. by W. Brinkmann, A.C. Fabian, F. Giovannelli (1990), pp. 39–65

    Google Scholar 

  • E.T. Million, S.W. Allen, Chandra measurements of non-thermal-like X-ray emission from massive, merging, radio halo clusters. Mon. Not. R. Astron. Soc. 399, 1307–1327 (2009). doi:10.1111/j.1365-2966.2009.15359.x

    ADS  Google Scholar 

  • F. Miniati, D. Ryu, H. Kang, T.W. Jones, R. Cen, J.P. Ostriker, Properties of cosmic shock waves in large-scale structure formation. Astrophys. J. 542, 608–621 (2000). doi:10.1086/317027

    ADS  Google Scholar 

  • F. Miniati, D. Ryu, H. Kang, T.W. Jones, Cosmic-ray protons accelerated at cosmological shocks and their impact on groups and clusters of galaxies. Astrophys. J. 559, 59–69 (2001). doi:10.1086/322375

    ADS  Google Scholar 

  • S.M. Molnar, N. Hearn, Z. Haiman, G. Bryan, A.E. Evrard, G. Lake, Accretion shocks in clusters of galaxies and their SZ signature from cosmological simulations. Astrophys. J. 696, 1640–1656 (2009). doi:10.1088/0004-637X/696/2/1640

    ADS  Google Scholar 

  • D. Nagai, E. Lau, Gas Clumping in the Outskirts of Lambda-CDM Clusters (2011)

    Google Scholar 

  • J. Niemiec, M. Ostrowski, Cosmic-ray acceleration at relativistic shock waves with a “realistic” magnetic field structure. Astrophys. J. 610, 851–867 (2004). doi:10.1086/421730

    ADS  Google Scholar 

  • C.A. Norman, D.B. Melrose, A. Achterberg, The origin of cosmic rays above 10 18.5 eV. Astrophys. J. 454, 60 (1995). doi:10.1086/176465

    ADS  Google Scholar 

  • M.S. Owers, W.J. Couch, P.E.J. Nulsen, Substructure in the cold front cluster Abell 3667. Astrophys. J. 693, 901 (2009)

    ADS  Google Scholar 

  • S. Paul, L. Iapichino, F. Miniati, J. Bagchi, K. Mannheim, Evolution of Shocks and Turbulence in Major Cluster Mergers (2010)

    Google Scholar 

  • V. Petrosian, A.M. Bykov, Particle acceleration mechanisms. Space Sci. Rev. 134, 207–227 (2008). doi:10.1007/s11214-008-9315-6

    ADS  Google Scholar 

  • V. Petrosian, A. Bykov, Y. Rephaeli, Nonthermal radiation mechanisms. Space Sci. Rev. 134, 191–206 (2008). doi:10.1007/s11214-008-9327-2

    ADS  Google Scholar 

  • C. Pfrommer, T.A. Enßlin, V. Springel, M. Jubelgas, K. Dolag, Simulating cosmic rays in clusters of galaxies—I. Effects on the Sunyaev-Zel’dovich effect and the X-ray emission. Mon. Not. R. Astron. Soc. 378, 385–408 (2007). doi:10.1111/j.1365-2966.2007.11732.x

    ADS  Google Scholar 

  • G.W. Pratt, H. Böhringer, J.H. Croston, M. Arnaud, S. Borgani, A. Finoguenov, R.F. Temple, Temperature profiles of a representative sample of nearby X-ray galaxy clusters. Astron. Astrophys. 461, 71–80 (2007). doi:10.1051/0004-6361:20065676

    ADS  Google Scholar 

  • G.W. Pratt, M. Arnaud, R. Piffaretti, H. Böhringer, T.J. Ponman, J.H. Croston, G.M. Voit, S. Borgani, R.G. Bower, Gas entropy in a representative sample of nearby X-ray galaxy clusters (REXCESS): relationship to gas mass fraction. Astron. Astrophys. 511, 85 (2010). doi:10.1051/0004-6361/200913309

    ADS  Google Scholar 

  • C.E. Rakowski, J.M. Laming, P. Ghavamian, The heating of thermal electrons in fast collisionless shocks: the integral role of cosmic rays. Astrophys. J. 684, 348–357 (2008). doi:10.1086/590245

    ADS  Google Scholar 

  • T.H. Reiprich, D.S. Hudson, Y. Zhang, K. Sato, Y. Ishisaki, A. Hoshino, T. Ohashi, N. Ota, Y. Fujita, Suzaku measurement of Abell 2204’s intracluster gas temperature profile out to 1800 kpc. Astron. Astrophys. 501, 899–905 (2009). doi:10.1051/0004-6361/200810404

    ADS  Google Scholar 

  • Y. Rephaeli, J. Nevalainen, T. Ohashi, A.M. Bykov, Nonthermal phenomena in clusters of galaxies. Space Sci. Rev. 134, 71–92 (2008). doi:10.1007/s11214-008-9314-7

    ADS  Google Scholar 

  • K. Roettiger, J.O. Burns, J.M. Stone, A cluster merger and the origin of the extended radio emission in Abell 3667. Astrophys. J. 518, 603–612 (1999). doi:10.1086/307327

    ADS  Google Scholar 

  • S. Rosswog, M. Brüggen, Introduction to High-Energy Astrophysics (2007)

    MATH  Google Scholar 

  • H.J.A. Röttgering, M.H. Wieringa, R.W. Hunstead, R.D. Ekers, The extended radio emission in the luminous X-ray cluster A3667. Mon. Not. R. Astron. Soc. 290, 577–584 (1997)

    ADS  Google Scholar 

  • H.J.A. Röttgering, M.H. Wieringa, R.W. Hunstead, R.D. Ekers, The extended radio emission in the luminous X-ray cluster A3667. Mon. Not. R. Astron. Soc. 290, 577–584 (1997)

    ADS  Google Scholar 

  • H. Röttgering, I. Snellen, G. Miley, J.P. de Jong, R.J. Hanisch, R. Perley, VLA observations of the rich X-ray cluster Abell 2256. Astrophys. J. 436, 654–668 (1994). doi:10.1086/174940

    ADS  Google Scholar 

  • H.R. Russell, J.S. Sanders, A.C. Fabian, S.A. Baum, M. Donahue, A.C. Edge, B.R. McNamara, C.P. O’Dea, Chandra observation of two shock fronts in the merging galaxy cluster Abell 2146. Mon. Not. R. Astron. Soc. (2010). doi:10.1111/j.1365-2966.2010.16822.x

    Google Scholar 

  • D. Ryu, H. Kang, E. Hallman, T.W. Jones, Cosmological shock waves and their role in the large-scale structure of the Universe. Astrophys. J. 593, 599–610 (2003). doi:10.1086/376723

    ADS  Google Scholar 

  • D. Ryu, H. Kang, J. Cho, S. Das, Turbulence and magnetic fields in the large-scale structure of the Universe. Science 320, 909 (2008). doi:10.1126/science.1154923

    ADS  Google Scholar 

  • J.S. Sanders, A.C. Fabian, R.K. Smith, J.R. Peterson, A direct limit on the turbulent velocity of the intracluster medium in the core of Abell 1835 from XMM-Newton. Mon. Not. R. Astron. Soc. 402, 11–15 (2010). doi:10.1111/j.1745-3933.2009.00789.x

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, R.M. Kulsrud, G.W. Hammett, P. Sharma, Plasma instabilities and magnetic field growth in clusters of galaxies. Astrophys. J. 629, 139–142 (2005). doi:10.1086/431202

    ADS  Google Scholar 

  • S.J. Schwartz, M.F. Thomsen, S.J. Bame, J. Stansberry, Electron heating and the potential jump across fast mode shocks. J. Geophys. Res. 93, 12923–12931 (1988)

    ADS  Google Scholar 

  • L.D. Shaw, D. Nagai, S. Bhattacharya, E.T. Lau, Impact of cluster physics on the Sunyaev-Zel’dovich power spectrum. Astrophys. J. 725, 1452–1465 (2010). doi:10.1088/0004-637X/725/2/1452

    ADS  Google Scholar 

  • A. Simionescu, E. Roediger, P.E.J. Nulsen, M. Brüggen, W.R. Forman, H. Böhringer, N. Werner, A. Finoguenov, The large-scale shock in the cluster of galaxies Hydra A. Astron. Astrophys. 495, 721–732 (2009). doi:10.1051/0004-6361:200811071

    ADS  Google Scholar 

  • A. Simionescu, S.W. Allen, A. Mantz, N. Werner, Y. Takei, R.G. Morris, A.C. Fabian, J.S. Sanders, P.E.J. Nulsen, M.R. George, G.B. Taylor, Baryons at the Edge of the X-Ray Brightest Galaxy Cluster (2011)

    Google Scholar 

  • L. Sironi, A. Spitkovsky, Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks (2010)

    Google Scholar 

  • S.W. Skillman, B.W. O’Shea, E.J. Hallman, J.O. Burns, M.L. Norman, Cosmological shocks in adaptive mesh refinement simulations and the acceleration of cosmic rays. Astrophys. J. 689, 1063–1077 (2008). doi:10.1086/592496

    ADS  Google Scholar 

  • A. Spitkovsky, Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. Lett. 682, 5–8 (2008). doi:10.1086/590248

    ADS  Google Scholar 

  • R.J. van Weeren, H.J.A. Röttgering, M. Brüggen, A. Cohen, A search for steep spectrum radio relics and halos with the GMRT. Astron. Astrophys. 508, 75–92 (2009a). doi:10.1051/0004-6361/200912501

    ADS  Google Scholar 

  • R.J. van Weeren, H.J.A. Röttgering, J. Bagchi, S. Raychaudhury, H.T. Intema, F. Miniati, T.A. Enßlin, M. Markevitch, T. Erben, Radio observations of ZwCl 2341.1+0000: a double radio relic cluster. Astron. Astrophys. 506, 1083–1094 (2009b). doi:10.1051/0004-6361/200912287

    ADS  Google Scholar 

  • R.J. van Weeren, H.J.A. Röttgering, J. Bagchi, S. Raychaudhury, H.T. Intema, F. Miniati, T.A. Enßlin, M. Markevitch, T. Erben, Radio observations of ZwCl 2341.1+0000: a double radio relic cluster. Astron. Astrophys. 506, 1083–1094 (2009c). doi:10.1051/0004-6361/200912287

    ADS  Google Scholar 

  • R.J. van Weeren, H.J.A. Röttgering, M. Brüggen, M. Hoeft, Particle acceleration on megaparsec scales in a merging galaxy cluster. Science 330, 347 (2010). doi:10.1126/science.1194293

    ADS  Google Scholar 

  • R.J. van Weeren, H.J.A. Röttgering, M. Brüggen, M. Hoeft (2011)

  • F. Vazza, G. Brunetti, C. Gheller, Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 395, 1333–1354 (2009a). doi:10.1111/j.1365-2966.2009.14691.x

    ADS  Google Scholar 

  • F. Vazza, G. Brunetti, A. Kritsuk, R. Wagner, C. Gheller, M. Norman, Turbulent motions and shocks waves in galaxy clusters simulated with adaptive mesh refinement. Astron. Astrophys. 504, 33–43 (2009b). doi:10.1051/0004-6361/200912535

    ADS  Google Scholar 

  • F. Vazza, G. Brunetti, C. Gheller, R. Brunino, Massive and refined: a sample of large galaxy clusters simulated at high resolution. I: thermal gas and properties of shock waves. New Astron. 15, 695–711 (2010). doi:10.1016/j.newast.2010.05.003

    ADS  Google Scholar 

  • T. Venturi, S. Giacintucci, G. Brunetti, R. Cassano, S. Bardelli, D. Dallacasa, G. Setti, GMRT radio halo survey in galaxy clusters at z=0.2–0.4. I. The REFLEX sub-sample. Astron. Astrophys. 463, 937–947 (2007). doi:10.1051/0004-6361:20065961

    ADS  Google Scholar 

  • A. Vikhlinin, M. Markevitch, S.S. Murray, C. Jones, W. Forman, L. Van Speybroeck, Chandra temperature profiles for a sample of nearby relaxed galaxy clusters. Astrophys. J. 628, 655–672 (2005). doi:10.1086/431142

    ADS  Google Scholar 

  • A. Vikhlinin, A.V. Kravtsov, R.A. Burenin, H. Ebeling, W.R. Forman, A. Hornstrup, C. Jones, S.S. Murray, D. Nagai, H. Quintana, A. Voevodkin, Chandra cluster cosmology project. Astrophys. J. 692, 1060 (2009)

    ADS  Google Scholar 

  • A. Vladimirov, D.C. Ellison, A. Bykov, Nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 652, 1246–1258 (2006). doi:10.1086/508154

    ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Turbulence dissipation and particle injection in nonlinear diffusive shock acceleration with magnetic field amplification. Astrophys. J. 688, 1084–1101 (2008). doi:10.1086/592240

    ADS  Google Scholar 

  • C. Vogt, T.A. Enßlin, A Bayesian view on Faraday rotation maps seeing the magnetic power spectra in galaxy clusters. Astron. Astrophys. 434, 67–76 (2005). doi:10.1051/0004-6361:20041839

    ADS  Google Scholar 

  • K. Wong, C.L. Sarazin, Effects of the non-equipartition of electrons and ions in the outskirts of relaxed galaxy clusters. Astrophys. J. 707, 1141–1159 (2009). doi:10.1088/0004-637X/707/2/1141

    ADS  Google Scholar 

  • Y.B. Zeldovich, A hypothesis, unifying the structure and the entropy of the Universe. Mon. Not. R. Astron. Soc. 160, 1 (1972)

    ADS  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, Modeling Bell’s nonresonant cosmic-ray instability. Astrophys. J. 678, 255–261 (2008). doi:10.1086/529579

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Brüggen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüggen, M., Bykov, A., Ryu, D. et al. Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts. Space Sci Rev 166, 187–213 (2012). https://doi.org/10.1007/s11214-011-9785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9785-9

Keywords

Navigation