Skip to main content
Log in

The Microscope Mission and Its Uncertainty Analysis

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The accurate test of the Universality of Free Fall may demonstrate a violation of Einstein Equivalence Principle (EP) as most attempts of Grand Unification theories seem to conduct. The MICROSCOPE space mission aims at an accuracy of 10−15 with a small drag free satellite and a payload based on electrostatic inertial sensors. The two test-masses made of Platinum and Titanium alloys are forced to follow accurately the same orbit. The sets of surrounding electrodes carried by gold coated silica parts allows the generation of electrical fields and electrostatic pressures on the masses. Common forces and torques are exploited to control the satellite drag compensation system and its fine inertial or rotating pointing. Difference in the force along the Earth gravity monopole is accurately measured and interpreted for the test. After a short presentation of the mission and the instrument, most of the relevant parameters to the experiment performance are detailed as well as the associated technologies to reach the expected levels of accuracy. Present error budgets confirm the test expected accuracy of better than 10−15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Y. André et al., Impact de la propulsion gaz froid sur la mission MICROSCOPE. Cnes Report MIC-NT-S-0-962-CNS (2007)

  • S. Baessler et al., Improved test of the equivalence principle for gravitational self- energy. Phys. Rev. Lett. 83, 18 (1999)

    Article  Google Scholar 

  • C. Brans, R.H. Dickes, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • D.G. Currie et al., A lunar laser ranging RetroReflector array for the 21st century, in NLSI Lunar Science Conference (2008)

  • T. Damour, Testing the equivalence principle: Why and how? Class. Quantum Grav. 13, A33–A41 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • T. Damour, J.P. Blaser, Optimizing the choice of materials in equivalence principle experiments, in Particle Astrophysics, Atomic Physics and Gravitation, ed. by J. Tran Than Van, G. Fontaine, E. Hinds (Frontières, Gif-sur-Yvette, 1994), pp. 433–440

    Google Scholar 

  • T. Damour, F. Piazza, G. Veneziano, Violation of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D 66, 046007 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • A. Einstein, The Meaning of Relativity (Princeton University Press, Princeton, 1922) (1988)

    MATH  Google Scholar 

  • A. Einstein, Theory of radiometer energy source. Z. Phys. 27, 1–6 (1924)

    Article  ADS  Google Scholar 

  • D. Feldman, Z. Liu, P. Nath, Sparticles at the LHC. JHEP 04, 054 (2008)

    Article  ADS  Google Scholar 

  • J. Flury, S. Bettadpur, B.D. Tapley, Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res. 42, 1414–1423 (2008)

    Article  ADS  Google Scholar 

  • F. Grassia et al., Quantum theory of fluctuations in a cold damped accelerometer. Eur. Phys. J. D 8, 101–110 (1999)

    ADS  Google Scholar 

  • E. Guiu et al., Calibration of MICROSCOPE. Adv. Space Res. 39, 315–323 (2007)

    Article  ADS  Google Scholar 

  • G.D. Hammond et al., New constraints on short-range forces coupling mass to intrinsic spin. Phys. Rev. Lett. 98, 081101 (2007)

    Article  ADS  Google Scholar 

  • L. Iorio, LARES/WEBER-SAT and the equivalence principle. Europhys. Lett. 80, 40007 (2007)

    Article  ADS  Google Scholar 

  • V. Josselin, P. Touboul, R. Kielbasa, Capacitive detection scheme for space accelerometers applications. Sens. Actuators 78, 92–98 (1999)

    Article  Google Scholar 

  • L. Lafargue, M. Rodrigues, P. Touboul, Towards low temperature electrostatic accelerometry. Rev. Sci. Instrum. 73, 1 (2002)

    Article  ADS  Google Scholar 

  • J. Mester, R. Torii, P. Worden, N. Lockerbie, S. Vitale, C.W.F. Everitt, The STEP mission: principles and baseline design. Class. Quantum Grav. 18, 2475–2486 (2001). See also http://einstein.stanford.edu/

    Article  MATH  ADS  Google Scholar 

  • R. Newman, Prospects for terrestrial equivalence principle tests with a cryogenic torsion pendulum. Class. Quantum Grav. 18, 2407–2415 (2001)

    Article  MATH  ADS  Google Scholar 

  • A. Nobili et al., The GG project: Testing the Equivalence Principle in space and on Earth. Adv. Space Res. 25, 1231–1235 (2000)

    Article  ADS  Google Scholar 

  • S.E. Pollack, S. Schlamminger, J.H. Gundlach, Outgassing, temperature gradients and the radiometer effect in LISA: a torsion pendulum investigation. arXiv:gr-qc/0702051v2 (2007)

  • G. Schäfer, Where do we stand in testing general relativity? Adv. Space Res. 32(7), 1203–1208 (2003)

    Article  ADS  Google Scholar 

  • S. Schlamminger et al., Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 04110 (2008)

    Article  Google Scholar 

  • T.J. Sumner et al., STEP (satellite test of the equivalence principle). Adv. Space Res. 39, 254–258 (2007)

    Article  ADS  Google Scholar 

  • P. Touboul et al., MICROSCOPE, testing the equivalence principle in space. C. R. Acad. Sci. Paris, Sér. IV 2, 1271–1286 (2001)

    Google Scholar 

  • P. Touboul et al., The MICROSCOPE mission. Acta Astronaut. 50(7), 433–443 (2002)

    Article  ADS  Google Scholar 

  • P. Touboul et al., In orbit nano-g measurements, lessons for future space missions. Aerospace Sci. Technol. 8, 431–44 (2004)

    Article  Google Scholar 

  • C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  • E. Willemenot, P. Touboul, On-ground investigations of space accelerometers noise with an electrostatic torsion pendulum. Rev. Sci. Instrum. 71(1), 302–309 (1999a)

    Article  ADS  Google Scholar 

  • E. Willemenot, P. Touboul, Electrostatically suspended torsion pendulum. Rev. Sci. Instrum. 71(1), 310–314 (1999b)

    Article  ADS  Google Scholar 

  • J.G. Williams, X.X. Newhall, J.O. Dickey, Relativity parameters determined from lunar laser ranging. Phys. Rev. D 53, 6730 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Touboul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touboul, P. The Microscope Mission and Its Uncertainty Analysis. Space Sci Rev 148, 455–474 (2009). https://doi.org/10.1007/s11214-009-9565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9565-y

Keywords

Navigation