Skip to main content
Log in

A need to return to space project SEE for measuring G and its possible variations

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

The SEE (Satellite Energy Exchange) mission was suggested and designed under NASA Project in 1992–2002 to make extremely accurate measurements on fundamental gravitation by observing the orbital perturbation of unconstrained orbiting test bodies in a femto-g to atto-g environment. The mission uses novel and original test body dynamics. Its broad objective is to support the development of gravity theory and its unification with other interactions by carrying out sensitive gravitational tests capable of discriminating among alternative theories. The SEE mission introduced and utilized new technology for near-zero-g environment creation, passive cryogenic temperature control, passive station-keeping capability, and non-contact sub-micron-accuracy distance measurements, all of which promise to have a wide variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Melnikov, in Gravitational Measurements, Fundamental Metrology and Constants, Ed. by V. de Sabbata and V. N. Melnikov (Kluwer Acad. Publ., Dordtrecht, 1988).

  2. V. N. Melnikov, Frontiers of Physics 4, 75 (2009).

    Google Scholar 

  3. V. de Sabbata, V. N. Melnikov, and P. I. Pronin, Prog. Theor. Phys. 88, 623 (1992).

    Article  ADS  Google Scholar 

  4. V. N. Melnikov, Int. J. Theor. Phys. 33, 1569 (1994).

    Article  Google Scholar 

  5. V. N. Melnikov, in: Proc. 2000 NASA/JPL Conference on Fundamental Physics in Microgravity, NASA Document D-21522, p. 4. 1 (2001).

    Google Scholar 

  6. V. N. Melnikov, in: Proc. Albert Einstein Century International Conference, Ed. by J.-M. Alimi and A. Fuzfa (AIP Conf. Proc., New York, 2006).

  7. A. J. Sanders and W. E. Deeds, Phys. Rev. D 46, 489 (1992).

    Article  ADS  Google Scholar 

  8. A. J. Sanders, V. N. Melnikov, et al., Class. Quantum Grav. 17, 2331 (2000).

    Article  ADS  Google Scholar 

  9. V. N. Melnikov, in Cosmology and Gravitation I, Ed. by M. Novello (Edition Frontieres, Singapore, 1994).

  10. A. D. Alexeev, V. N. Melnikov, et al., Grav. Cosmol. 5, 67 (1999).

    ADS  Google Scholar 

  11. A. D. Alexeev, V. N. Melnikov, et al., Metrologia 38, 397 (2001).

    Article  ADS  Google Scholar 

  12. V. D. Ivashchuk, V. S. Man’ko, and V. N. Melnikov, Grav. Cosmol. 6, 219 (2000).

    ADS  MathSciNet  Google Scholar 

  13. W. J. Marciano, Phys. Rev. Lett. 52, 489 (1984).

    Article  ADS  Google Scholar 

  14. K. A. Bronnikov, V. D. Ivashchuk, and V. N. Melnikov, Nuovo Cim. B 102, 209 (1988).

    Article  ADS  Google Scholar 

  15. V. D. Ivashchuk and V. N. Melnikov, in Lecture Notes in Physics. Mathematical and Quantum Aspects of Relativity and Cosmology (Springer, 2000).

    Google Scholar 

  16. A. J. Sanders et al., Grav. Cosmol. 3, 287 (1997).

    ADS  Google Scholar 

  17. A. D. Alexeev, V. N. Melnikov, et al., Meas. Techn. 36, 1070 (1993).

    Article  Google Scholar 

  18. A. D. Alexeev, V. N. Melnikov, et al., Meas. Techn. 337, 1 (1994).

    Google Scholar 

  19. K. A. Bronnikov, V. N. Melnikov, et al., Meas. Techn. 36, 845 (1993).

    Article  Google Scholar 

  20. K. A. Bronnikov, V. N. Melnikov, et al., Meas. Techn. 36, 951 (1993).

    Article  Google Scholar 

  21. K. A. Bronnikov, M. Yu. Konstantinov, and V. N. Melnikov, Grav. Cosmol. 2, 361 (1996).

    ADS  Google Scholar 

  22. P. N. Antonyuk, K. A. Bronnikov, and V. N. Melnikov, Meas. Techn. 36, 837 (1993).

    Article  Google Scholar 

  23. P. N. Antonyuk, K. A. Bronnikov, and V. N. Melnikov, Astron. Lett. 20, 59 (1994).

    ADS  Google Scholar 

  24. V. D. Ivashchuk and V. N. Melnikov, “On time variations of gravitational and Yang-Mills constants in cosmological model of superstring origin,” Grav. Cosmol. 20, 26–29 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K. A. Bronnikov, S. A. Kononogov, and V. N. Melnikov, “Variations in the gravitational constant in generalized theories of gravitation,” Measurement Techniques 57 (11), 1255 (2015).

    Article  Google Scholar 

  26. V. D. Ivashchuk and V. N. Melnikov, “Integrable multidimensional gravitational and cosmological models and applications,” Int. J. Mod. Phys. A 31, 1641009 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. V. N. Melnikov, “Centenary of Einstein’s general relativity. Its present extensions,” Grav. Cosmol. 22, 80 (2016).

    Article  ADS  MATH  Google Scholar 

  28. V. N. Melnikov, “K. P. Stanyukovich and GR extensions by his colleagues in diverse dimensions,” J. Phys. Conf. Ser. 731, 01200 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Melnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, V.N. A need to return to space project SEE for measuring G and its possible variations. Gravit. Cosmol. 22, 333–338 (2016). https://doi.org/10.1134/S0202289316040125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289316040125

Navigation