Skip to main content
Log in

Physics of the Solar Wind–Local Interstellar Medium Interaction: Role of Magnetic Fields

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The interaction of the solar wind with the local interstellar medium is characterized by the self-consistent coupling of solar wind plasma, both upstream and downstream of the heliospheric termination shock, the interstellar plasma, and the neutral atom component of interstellar and solar wind origin. The complex coupling results in the creation of new plasma components (pickup ions), turbulence, and anomalous cosmic rays, and new populations of neutral atoms and their coupling can lead to energetic neutral atoms that can be detected at 1 AU. In this review, we discuss the interaction and coupling of global sized structures (the heliospheric boundary regions) and kinetic physics (the distributions that are responsible for the creation of energetic neutral atoms) based on models that have been developed by the University of Alabama in Huntsville group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Alexashov, V. Izmodenov, Kinetic vs. multi-fluid models of H atoms in the heliospheric interface: a comparison. Astron. Astrophys. 439, 1171–1181 (2005)

    Article  ADS  Google Scholar 

  • W.I. Axford, The interaction of the solar wind with the interstellar medium. Solar Wind, NASA Spec. Publ. SP-308, 609 (1972)

    ADS  Google Scholar 

  • W.I. Axford, A.J. Dessler, B. Gottlieb, Astrophys. J. 137, 1268 (1963)

    Article  ADS  Google Scholar 

  • S.J. Bame, J.R. Asbridge, H.E. Felthauser, E.W. Hones, I.B. Strong, J. Geophys. Res. 72, 113 (1967)

    Article  ADS  Google Scholar 

  • V.B. Baranov, Y.G. Malama, J. Geophys. Res. 98, 15157 (1993)

    Article  ADS  Google Scholar 

  • V.B. Baranov, Y.G. Malama, J. Geophys. Res. 100, 14755 (1995)

    Article  ADS  Google Scholar 

  • V.B. Baranov, K. Krasnobaev, A. Kulikovsky, Sov. Phys. Dokl. 15, 791 (1971)

    ADS  Google Scholar 

  • V.B. Baranov, M.K. Ermakov, M.G. Lebedev, Three-component gasdynamic model of the interaction of the solar wind with the interstellar medium. Sov. Astron. Lett. 7, 206 (1981)

    ADS  Google Scholar 

  • T. Borrmann, H. Fichtner, Adv. Space Sci. 35, 2091 (2005)

    Article  ADS  Google Scholar 

  • S.N. Borovikov, J. Heerikhuisen, N.V. Pogorelov, I.A. Kryukov, G.P. Zank, in Numerical Modeling of Space Plasma Flows: ASTRONUM-2007, ed. by N.V. Pogorelov, E. Audit, G.P. Zank (ASP, San Francisco, 2008a), pp. 197–203

    Google Scholar 

  • S.N. Borovikov, N.V. Pogorelov, G.P. Zank, I.A. Kryukov, Astrophys. J. 682, 1404 (2008b)

    Article  ADS  Google Scholar 

  • J.M. Burgers, Flow Equations for Composite Gases (Academic Press, New York, 1969)

    MATH  Google Scholar 

  • L.F. Burlaga , Science 309, 2027–2029 (2005)

    Article  ADS  Google Scholar 

  • L.F. Burlaga , Nature 454, 75 (2008)

    Article  ADS  Google Scholar 

  • M.R. Collier, Geophys. Res. Lett. 22, 2673 (1995)

    Article  ADS  Google Scholar 

  • D.P. Cox, L. Helenius, Flux-tube dynamics and a model for the origin of the Local Fluff. Astrophys. J. 583, 205 (2003)

    Article  ADS  Google Scholar 

  • A. Dalgarno, Proc. Phys. Soc. 75, 374 (1960)

    Article  Google Scholar 

  • L.E. Davis, Interplanetary magnetic fields and cosmic rays. Phys. Rev. 100, 1440 (1955)

    Article  ADS  Google Scholar 

  • R.B. Decker , Science 309, 2020 (2005)

    Article  ADS  Google Scholar 

  • R.B. Decker , Nature 454, 67 (2008)

    Article  ADS  Google Scholar 

  • H.J. Fahr, S. Grzedzielski, R. Ratkiewicz, Ann. Geophys. 6, 337 (1988)

    ADS  Google Scholar 

  • H.J. Fahr, T. Kausch, H. Scherer, Astron. Astrophys. 357, 268 (2000)

    ADS  Google Scholar 

  • L.A. Fisk, G. Gloeckler, Astrophys. J. 640, L79 (2006)

    Article  ADS  Google Scholar 

  • W.L. Fite, A.C.H. Smith, R.F. Stebbings, Charge transfer in collisions involving symmetric and asymmetric resonance. Proc. R. Soc. Lond. Ser. A 268, 527 (1962)

    Article  ADS  Google Scholar 

  • V. Florinski, G.P. Zank, N.V. Pogorelov, J. Geophys. Res. 108(A6), 1228 (2003a). doi:10.1029/2002JA009695

    Article  Google Scholar 

  • V. Florinski, G.P. Zank, Comment on “On nonideal MHD properties of the partially ionized interstellar gas” by V.B. Baranov and H.J. Fahr. J. Geophys. Res. 108(A12), 1438 (2003d). doi:10.1029/2003JA009950

    Article  Google Scholar 

  • V. Florinski, G.P. Zank, The galactic cosmic ray intensity in the heliosphere in response to variable interstellar environments, in Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth, ed. by P.C. Frisch (Springer, Netherlands, 2006), p. 281

    Chapter  Google Scholar 

  • V. Florinski, G.P. Zank, W.I. Axford, The solar system in a dense interstellar cloud: implications for cosmic ray fluxes at Earth and 10Be records. Geophys. Res. Lett. 30, 2206 (2003b). doi:10.1029/2003GL017566

    Article  Google Scholar 

  • V. Florinski, N.V. Pogorelov, G.P. Zank, B.E. Wood, D.P. Cox, Astrophys. J. Lett. 604, 700 (2004a)

    Article  ADS  Google Scholar 

  • V. Florinski, G.P. Zank, N.V. Pogorelov, J. Geophys. Res. (Space), 110(A7) (2005a). CiteID A07104

  • P.C. Frisch, Characteristics of nearby interstellar matter. Space Sci. Rev. 72, 499 (1995)

    Article  ADS  Google Scholar 

  • G.P. Gayley, G.P. Zank, H.L. Pauls, P.C. Frisch, D.E. Welty, One-shock or two-shock heliosphere: Lyman-α observations and measurements. Astrophys. J. 487, 259 (1997)

    Article  ADS  Google Scholar 

  • G. Gloeckler, Space Sci. Rev. 78, 335 (1996)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, Space Sci. Rev. 86, 127 (1998)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, H. Balsiger, L.A. Fisk, A.B. Galvin, F.M. Ipavich, K.W. Ogilvie, R. von Steiger, B. Wilken, Detection of interstellar pick-up hydrogen in the solar system. Science 261, 70 (1993)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, Electron plasma oscillations upstream of the solar wind termination shock. Science 309, 2025–2027 (2005)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, Nature 454, 67 (2008)

    Article  Google Scholar 

  • J. Heerikhuisen, V. Florinski, G.P. Zank, Interaction between the solar wind and interstellar gas: a comparison between Monte-Carlo and fluid approaches, J. Geophys. Res. 111(A6) (2006). CiteID A06110

  • J. Heerikhuisen , in Numerical Modeling of Space Plasma Flows: ASTRONUM-2006, ed. by N.V. Pogorelov. ASP Conf., vol. 359 (Astronomical Society of the Pacific, San Francisco, 2006b), p. 251

    Google Scholar 

  • J. Heerikhuisen, N.V. Pogorelov, G.P. Zank, V. Florinski, Astrophys. J. 655, L53 (2007)

    Article  ADS  Google Scholar 

  • J. Heerikhuisen, N.V. Pogorelov, V. Florinski, G.P. Zank, J. le Roux, Astrophys. J. 682, 679 (2008a)

    Article  ADS  Google Scholar 

  • J. Heerikhuisen , in Numerical Modeling of Space Plasma Flows: ASTRONUM-2008, ed. by N.V. Pogorelov, E. Audit, G.P. Zank. ASP Conf. Ser. (Astronomical Society of the Pacific, San Francisco, 2008b)

    Google Scholar 

  • P.A. Isenberg, Interaction of the solar wind with interstellar neutral hydrogen: Three-fluid model. J. Geophys. Res. 91, 9965 (1986)

    Article  ADS  Google Scholar 

  • P.A. Isenberg, W.C. Feldman, Electron-impact ionization of interstellar hydrogen and helium at interplanetary shocks. Geophys. Res. Lett. 22, 873 (1995)

    Article  ADS  Google Scholar 

  • P.A. Isenberg, M.A. Lee, A dispersive analysis of bispherical pickup ion distributions. J. Geophys. Res. 101(11), 055 (1996)

    Google Scholar 

  • P.A. Isenberg, C.W. Smith, W.H. Matthaeus, Turbulent heating of the distant solar wind by interstellar pickup protons. Astrophys. J. 592, 564–573 (2003)

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, J. Geiss, R. Lallement, G. Gloeckler, V.B. Baranov, Y.G. Malama, Filtration of interstellar hydrogen in the two-shock heliospheric interface: Inferences on the local interstellar cloud electron density. J. Geophys. Res. 104, 4731 (1999)

    Article  ADS  Google Scholar 

  • V.V. Izmodenov, D. Alexashov, A. Myasnikov, Astron. Astrophys. 437, L35–L38 (2005)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, J. Giacalone, Astrophys. J. 605, L145–L148 (2004)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, J. Giacalone, J. Kota, 611, L141–L144 (2004)

    Google Scholar 

  • S.R. Karmesin, P.C. Liewer, J.U. Brackbill, Geophys. Res. Lett. 22, 1153 (1995)

    Article  ADS  Google Scholar 

  • I.K. Khabibrakhmanov, D. Summers, G.P. Zank, H.L. Pauls, Solar wind flow with interstellar hydrogen pick-up. Astrophys. J. 469, 921 (1996)

    Article  ADS  Google Scholar 

  • R.M. Kulsrud, in Basic Plasma Physics, ed. by A.A. Galeev, R.N. Sudan. vol. 1 (North Holland Publ., Amsterdam, 1984), p. 115

    Google Scholar 

  • R. Lallement, E. Quemerais, J.L. Bertaux, S. Ferron, D. Koutroumpa, R. Pellinen, Science 307, 1447 (2005)

    Article  ADS  Google Scholar 

  • P.C. Liewer, S.R. Karmesin, J.U. Brackbill, Hydrodynamic instability of the heliopause driven by plasma-neutral charge-exchange interactions. J. Geophys. Res. 101, 17119 (1996)

    Article  ADS  Google Scholar 

  • T. Linde, T.I. Gombosi, P.L. Roe, K.G. Powell, D.L. DeZeeuw, The heliosphere in the magnetized local interstellar medium: results of a 3D MHD simulation. J. Geophys. Res. 103, 1889 (1998)

    Article  ADS  Google Scholar 

  • B.J. Lindsay, R.F. Stebbings, J. Geophys. Res. 110, A12213 (2005)

    Article  ADS  Google Scholar 

  • J.L. Linsky, B.E. Wood, The α Cen line of sight: D/H ratio, physical properties of local interstellar gas, and measurement of heated hydrogen near the heliopause. Astrophys. J. 463, 254 (1996)

    Article  ADS  Google Scholar 

  • A.S. Lipatov, G.P. Zank, H.L. Pauls, The interaction of neutral interstellar H with the heliosphere: A2.5D particle-mesh Boltzmann simulation. J. Geophys. Res. 103, 20,631 (1998)

    ADS  Google Scholar 

  • L. Maher, B. Tinsley, Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions. J. Geophys. Res. 82, 689 (1977)

    Article  ADS  Google Scholar 

  • Yu.G. Malama, Monte-Carlo simulation of neutral atoms trajectories in the solar system. Astrophys. Space Sci. 176, 21 (1991)

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, G.P. Zank, C.W. Smith, S. Oughton, Turbulence, spatial transport, and heating of the solar wind. Phys. Rev. Lett. 82, 3444 (1999)

    Article  ADS  Google Scholar 

  • D.J. McComas, H.O. Funsten, J.T. Gosling, W.R. Pryor, ULYSSES measurements of variations in the solar wind-interstellar hydrogen charge exchange rate. Geophys. Res. Lett. 26(17), 2701 (1999)

    Article  ADS  Google Scholar 

  • D.J. McComas, B.L. Barraclough, H.O. Funsten, J.T. Gosling, E. Santiago-Muñoz, R.M. Skoug, B.E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419 (2000)

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, L. Bartolone, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H. Funsten, S. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, H. Runge, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, G. Zank, The Interstellar Boundary Explorer (IBEX): Update at the end of phase B, in The Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, AIP Conference Proceedings, vol. 858 (2006), pp. 241–250

  • F.B. McDonald, E.C. Stone, A.C. Cummings, B. Heikkila, N. Lal, W.R. Webber, Nature 426, 48 (2003)

    Article  ADS  Google Scholar 

  • J.F. McKenzie, K.O. Westphal, Phys. Fluids 11, 2350 (1968)

    Article  MATH  ADS  Google Scholar 

  • R.A. Mewaldt et al., in Joint SOHO/ACE workshop "Solar and Galactic Composition, ed. by R.F. Wimmer-Schweingruber. American Institute of Physics Conference Series, vol. 598 (2001), p. 165

  • E. Möbius, D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, Nature 318, 426 (1985)

    Article  ADS  Google Scholar 

  • E. Möbius, M. Bzovski, S. Chalov, H.-J. Fahr, G. Gloeckler , Astron. Astrophys. 426, 897 (2004)

    Article  ADS  Google Scholar 

  • H.-R. Müller, P.C. Frisch, G.P. Zank, Astrophys. J. 647(2), 1491 (2006)

    Article  ADS  Google Scholar 

  • M. Opher, E.C. Stone, P.C. Liewer, Astrophys. J. 640, L71 (2006)

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of interplanetary gas and magnetic fields. Astrophys. J. 123, 644 (1958)

    Google Scholar 

  • E.N. Parker, The stellar-wind regions. Astrophys. J. 134, 20 (1961)

    Article  ADS  Google Scholar 

  • E.N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963)

    MATH  Google Scholar 

  • H.L. Pauls, G.P. Zank, Interaction of a nonuniform solar wind with the local interstellar medium. J. Geophys. Res. 101, 17081 (1996)

    Article  ADS  Google Scholar 

  • H.L. Pauls, G.P. Zank, Interaction of a nonuniform solar wind with the local interstellar medium. 2. A two-fluid model. J. Geophys. Res. 102, 19,779 (1997a)

    ADS  Google Scholar 

  • H.L. Pauls, G.P. Zank, Modelling the solar wind/interstellar wind interaction, in Proc. 25th Int. Cosmic Ray Conf., vol. 2 (1997b), p. 241

  • H.L. Pauls, G.P. Zank, L.L. Williams, Interaction of the solar wind with the local interstellar medium. J. Geophys. Res. 100, 21,595 (1995)

    Article  ADS  Google Scholar 

  • Phillips , Science 268, 1030 (1995)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, T. Matsuda, Nonevolutionary MHD shocks in the solar wind and interstellar medium interaction. Astron. Astrophys. 354, 697 (2000)

    ADS  Google Scholar 

  • N.V. Pogorelov, A.Y. Semenov, Solar wind interaction with the magnetized interstellar medium. Shock-capturing modeling. Astron. Astrophys. 321, 330 (1997)

    ADS  Google Scholar 

  • N.V. Pogorelov, G.P. Zank, in Numerical Modeling of Space Plasma Flows, ed. by N.V. Pogorelov, G.P. Zank. ASP Conf. Ser., vol. 359 (ASP, San Francisco, 2006), p. 184

    Google Scholar 

  • N.V. Pogorelov, G.P. Zank, T. Ogino, Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields I. Magnetohydrodynamic model: interstellar perspective. Astrophys. J. 614, 1007 (2004)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, G.P. Zank, T. Ogino, Astrophys. J. 644, 1299 (2006)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, E.C. Stone, V. Florinski, G.P. Zank, Astrophys. J. 668, 611 (2007)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, J. Heerikhuisen, G.P. Zank, Astrophys. J. 675, L41 (2008a)

    Article  ADS  Google Scholar 

  • N.V. Pogorelov, J. Heerikhuisen, G.P. Zank, S.N. Borovikov, Space Sci. Rev. (2008)

  • N.V. Pogorelov, G.P. Zank, S.N. Borovikov, V. Florinski, J. Heerikhuisen, I.A. Kryukov, in Numerical Modeling of Space Plasma Flows: ASTRONUM-2007, ed. by N.V. Pogorelov, E. Audit, G.P. Zank. ASP Conf. Ser., vol. 385 (Astronomical Society of the Pacific, San Francisco, 2008b), pp. 180–188

    Google Scholar 

  • N.V. Pogorelov et al., in Particle Acceleration in the Heliosphere and Beyond, ed. by Gang Li, Qiang Hu, and G.P. Zank, AIP Conference Proceedings (2008c)

  • C. Prested et al., J. Geophys. Res. (2007, accepted)

  • C. Prested, N. Schwadron, J. Passuite, B. Randol, B. Stuart, G. Crew, J. Heerikhuisen, N. Pogorelov, G. Zank, M. Opher, F. Allegrini, D.J. McComas, M. Reno, E. Roelof, S. Fuselier, H. Funsten, E. Moebius, L. Saul, Implications of solar wind suprathermal tails for IBEX ENA images of the heliosheath. J. Geophys. Res. 113(A6), (2008)

  • R. Ratkiewicz, A. Barnes, G.A. Molvik, J.R. Spreiter, S.S. Stahara, M. Vinokur, S. Venkateswaran, Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations. Astron. Astrophys. 335, 363 (1998)

    ADS  Google Scholar 

  • J.D. Richardson, C. Wang, M. Zhang, in 5th International IGPP Conf. AIP Conf. Proc., vol. 85 (2006). p. 110

  • J.D. Richardson , Nature 454, 63 (2008)

    Article  ADS  Google Scholar 

  • H.L. Ripken, H.J. Fahr, Astron. Astrophys. 122, 181 (1983)

    ADS  Google Scholar 

  • K. Scherer, H. Fichtner, O. Stawicki, The heliosphere, cosmic rays, climate, in The Outer Heliosphere: The next Frontiers, ed. by K. Scherer, H. Fichtner, H.-J. Fahr, E. Marsch (Pergamon, New York, 2001), p. 493

    Chapter  Google Scholar 

  • K. Scherer, H.J. Fahr, Geophys. Res. Lett. 30(2), 1045 (2003)

    Article  ADS  Google Scholar 

  • K. Scherer, H. Fichtner, B. Heber, S.E.S. Ferreira, M.S. Potgieter, Adv. Space Res. 41(8), 1171 (2008)

    Article  ADS  Google Scholar 

  • J.D. Slavin, P.C. Frisch, The ionization of nearby gas. Astrophys. J. 565, 364 (2002)

    Article  ADS  Google Scholar 

  • C.W. Smith, W.H. Matthaeus, G.P. Zank, N.F. Ness, S. Oughton, J.D. Richardson, Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations. J. Geophys. Res. Space 106, 8253–8272 (2000)

    Article  ADS  Google Scholar 

  • E.C. Stone , Science 309, 2017 (2005)

    Article  ADS  Google Scholar 

  • E.C. Stone , Nature 454, 71 (2008)

    Article  ADS  Google Scholar 

  • D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991)

    Article  ADS  Google Scholar 

  • T. Tanaka, H. Washimi, J. Geophys. Res. 104, 12605 (1999)

    Article  ADS  Google Scholar 

  • C. Wang, J.W. Belcher, Numerical investigation of hydrodynamic instabilities of the heliopause. J. Geophys. Res. 103, 247 (1998)

    Article  ADS  Google Scholar 

  • H. Washimi, T. Tanaka, 3-D magnetic field and current system in the heliosphere. Space Sci. Rev. 78, 85 (1996)

    Article  ADS  Google Scholar 

  • H. Washimi, T. Tanaka, Adv. Space Res. 27, 509 (2001)

    Article  ADS  Google Scholar 

  • H. Washimi, G.P. Zank, T. Tanaka, 5rd International IGPP Conf. AIP Conf. Proc. vol. 858 (2006), p. 58

  • H. Washimi, G.P. Zank, Q. Hu, T. Tanaka, 6th International IGPP Conf. AIP Proc. vol. 932 (2007a), p. 153

  • H. Washimi, G.P. Zank, Q. Hu, T. Tanaka, K. Munakata, Astrophys. J. Lett. 670, L139 (2007b)

    Article  ADS  Google Scholar 

  • L.L. Williams, G.P. Zank, The effect of magnetic field geometry on the wave signature of the pickup of interstellar neutrals. J. Geophys. Res. 99, 19,229 (1994)

    ADS  Google Scholar 

  • L.L. Williams, G.P. Zank, W.H. Matthaeus, Dissipation of pick-up induced waves: A solar wind temperature increase in the outer heliosphere? J. Geophys. Res. 100, 17,059 (1995)

    ADS  Google Scholar 

  • L.L. Williams, D.T. Hall, H.L. Pauls, G.P. Zank, The heliospheric Hydrogen distribution: A multi-fluid model. Astrophys. J. 476, 366 (1997)

    Article  ADS  Google Scholar 

  • M. Witte, Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with the Ulysses/GAS-instrument. Astron. Astrophys. 426, 835 (2004)

    Article  ADS  Google Scholar 

  • B.E. Wood, J.L. Linsky, H.-R. Müller, G.P. Zank, Observational estimates for the mass-loss rates of alpha Centauri and Proxima Centauri using HST Ly-alpha spectra. Astrophys. J. Lett. 547, L49–L52 (2001)

    Article  ADS  Google Scholar 

  • G.P. Zank, Interaction of the solar wind with the local interstellar medium: A theoretical perspective. Space Sci. Rev. 89, 413 (1999)

    Article  ADS  Google Scholar 

  • G.P. Zank, The dynamical heliosphere, in Solar Wind Nine, ed. by S.R. Habbal, R. Esser, J.V. Hollweg, P.A. Isenberg, AIP Conf. Proc., vol. 471 (1999d), pp. 783–786

  • G.P. Zank, P.C. Frisch, Consequences of a change in the galactic environment of the Sun. Astrophys. J. 518, 965 (1999e)

    Article  ADS  Google Scholar 

  • G.P. Zank, H.-R. Müller, The dynamical heliosphere. J. Geophys. Res. 108(A6), 1240 (2003). doi:10.1029/2002JA009689

    Article  Google Scholar 

  • G.P. Zank, W.H. Matthaeus, C.W. Smith, Evolution of turbulent magnetic fluctuation power with heliospheric distance. J. Geophys. Res. 101, 17,081 (1996a)

    Google Scholar 

  • G.P. Zank, H.L. Pauls, I.H. Cairns, G.M. Webb, Interstellar pick-up ions and perpendicular shocks: implications for the termination shock and interplanetary shocks. J. Geophys. Res. 101, 457 (1996b)

    Article  ADS  Google Scholar 

  • G.P. Zank, H.L. Pauls, L.L. Williams, D.T. Hall, Interaction of the solar wind with the local interstellar medium: A multifluid approach. J. Geophys. Res. 101(21), 639 (1996d)

    Google Scholar 

  • G.P. Zank, W.H. Matthaeus, J.W. Bieber, H. Moraal, The radial and latitudinal dependence of the cosmic ray diffusion tensor in the heliosphere. J. Geophys. Res. 103, 2085 (1998)

    Article  ADS  Google Scholar 

  • G.P. Zank, H.-R. Mueller, V. Florinski, P.C. Frisch, Heliospheric variation in response to changing interstellar environments, in Solar Journey: Significance of our Galactic Environment for the Heliosphere and Earth, ed. by G.P. Zank (Springer, Berlin, 2006), p. 23

    Chapter  Google Scholar 

  • G.P. Zank et al., Space Sci. Rev. (2008, in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Zank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zank, G.P., Pogorelov, N.V., Heerikhuisen, J. et al. Physics of the Solar Wind–Local Interstellar Medium Interaction: Role of Magnetic Fields. Space Sci Rev 146, 295–327 (2009). https://doi.org/10.1007/s11214-009-9497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9497-6

Keywords

Navigation