Skip to main content
Log in

Persistent fast kink magnetohydrodynamic waves detected in a quiescent prominence

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Small-scale, cyclic, transverse motions of plasma threads are usually seen in solar prominences, which are often interpreted as magnetohydrodynamic (MHD) waves. Here, we observed small-scale decayless transverse oscillations in a quiescent prominence, and they appear to be omnipresent. The oscillatory periods of the emission intensity and a proxy for the line-of-sight Doppler shift are about half period of the displacement oscillations. This feature agrees well with the fast kink-mode waves in a flux tube. All the moving threads oscillate transversally spatially in phase and exhibit no significant damping throughout the visible segments, indicating that the fast kink MHD waves are persistently powered and ongoing dissipating energy is transferred to the ambient plasma in the quiet corona. However, our calculations suggest that the energy taken by the fast kink MHD waves alone can not support the coronal heating on the quiet Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Mackay, J. T. Karpen, J. L. Ballester, B. Schmieder, and G. Aulanier, Space Sci. Rev. 151, 333 (2010), arXiv: 1001.1635.

    Article  ADS  Google Scholar 

  2. S. E. Gibson, Living Rev. Sol. Phys. 15, 7 (2018).

    Article  ADS  Google Scholar 

  3. S. Parenti, Living Rev. Sol. Phys. 11, 1 (2014).

    Article  ADS  Google Scholar 

  4. P. F. Chen, A. A. Xu, and M. D. Ding, Res. Astron. Astrophys. 20, 166 (2020), arXiv: 2010.02462.

    Article  ADS  Google Scholar 

  5. Y. Lin, O. Engvold, L. R. der Voort, J. E. Wiik, and T. E. Berger, Sol. Phys. 226, 239 (2005).

    Article  ADS  Google Scholar 

  6. T. J. Okamoto, S. Tsuneta, T. E. Berger, K. Ichimoto, Y. Katsukawa, B. W. Lites, S. Nagata, K. Shibata, T. Shimizu, R. A. Shine, Y. Suematsu, T. D. Tarbell, and A. M. Title, Science 318, 1577 (2007), arXiv: 0801.1958.

    Article  ADS  Google Scholar 

  7. T. J. Okamoto, P. Antolin, B. D. Pontieu, H. Uitenbroek, T. V. Doorsselaere, and T. Yokoyama, Astrophys. J. 809, 71 (2015), arXiv: 1506.08965.

    Article  ADS  Google Scholar 

  8. Z. Ning, W. Cao, T. J. Okamoto, K. Ichimoto, and Z. Q. Qu, Astron. Astrophys. 499, 595 (2009).

    Article  ADS  Google Scholar 

  9. X. L. Yan, Z. K. Xue, Y. Y. Xiang, and L. H. Yang, Res. Astron. Astrophys. 15, 1725 (2015), arXiv: 1502.03546.

    Article  ADS  Google Scholar 

  10. Y. Bi, B. Yang, T. Li, Y. Dong, and K. Ji, Astrophys. J. 891, L40 (2020), arXiv: 2003.08075.

    Article  ADS  Google Scholar 

  11. Y. H. Zhou, P. F. Chen, J. Hong, and C. Fang, Nat. Astron. 4, 994 (2020), arXiv: 2104.13564.

    Article  ADS  Google Scholar 

  12. L. Li, and J. Zhang, Sol. Phys. 282, 147 (2013).

    Article  ADS  Google Scholar 

  13. B. Schmieder, T. A. Kucera, K. Knizhnik, M. Luna, A. Lopez-Ariste, and D. Toot, Astrophys. J. 777, 108 (2013), arXiv: 1309.1568.

    Article  ADS  Google Scholar 

  14. Z. Ning, W. Cao, and P. R. Goode, Astrophys. J. 707, 1124 (2009).

    Article  ADS  Google Scholar 

  15. Y. Shen, Y. Liu, Y. D. Liu, P. F. Chen, J. Su, Z. Xu, and Z. Liu, Astrophys. J. 814, L17 (2015), arXiv: 1511.02489.

    Article  ADS  Google Scholar 

  16. Y. Taroyan, and R. Soler, Astron. Astrophys. 631, A144 (2019).

    Article  ADS  Google Scholar 

  17. O. Engvold, in INTAS Workshop on MHD Waves in Astrophysical Plasmas: Proceedings of the INTAS Workshop, In: J. L. Ballester, and B. Roberts, eds., Universitat de les Illes Balears, Palma de Mallorca, Universitat de les Illes Balears, 2001.

  18. C. Foullon, E. Verwichte, and V. M. Nakariakov, Astron. Astrophys. 427, L5 (2004).

    Article  ADS  Google Scholar 

  19. G. Pouget, K. Bocchialini, and J. Solomon, Astron. Astrophys. 450, 1189 (2006).

    Article  ADS  Google Scholar 

  20. Q. M. Zhang, D. Li, and Z. J. Ning, Astrophys. J. 851, 47 (2017), arXiv: 1711.00670.

    Article  ADS  Google Scholar 

  21. I. Arregui, R. Oliver, and J. L. Ballester, Living Rev. Sol. Phys. 15, 3 (2018).

    Article  ADS  Google Scholar 

  22. R. Oliver, and J. L. Ballester, Sol. Phys. 206, 45 (2002).

    Article  ADS  Google Scholar 

  23. A. Asai, T. T. Ishii, H. Isobe, R. Kitai, K. Ichimoto, S. UeNo, S. Nagata, S. Morita, K. Nishida, D. Shiota, A. Oi, M. Akioka, and K. Shibata, Astrophys. J. 745, L18 (2012), arXiv: 1112.5915.

    Article  ADS  Google Scholar 

  24. Y. Shen, K. Ichimoto, T. T. Ishii, Z. Tian, R. Zhao, and K. Shibata, Astrophys. J. 786, 151 (2014), arXiv: 1403.7705.

    Article  ADS  Google Scholar 

  25. Q. M. Zhang, J. H. Guo, K. V. Tam, and A. A. Xu, Astron. Astrophys. 635, A132 (2020), arXiv: 2001.01250.

    Article  ADS  Google Scholar 

  26. V. M. Nakariakov, S. A. Anfinogentov, G. Nisticò, and D. H. Lee, Astron. Astrophys. 591, L5 (2016).

    Article  ADS  Google Scholar 

  27. D. Li, Y. Shen, Z. Ning, Q. Zhang, and T. Zhou, Astrophys. J. 863, 192 (2018), arXiv: 1807.03942.

    Article  ADS  Google Scholar 

  28. S. F. Martin, Y. Lin, and O. Engvold, Sol. Phys. 250, 31 (2008).

    Article  ADS  Google Scholar 

  29. R. J. Morton, G. Verth, D. B. Jess, D. Kuridze, M. S. Ruderman, M. Mathioudakis, and R. Erdélyi, Nat. Commun. 3, 1315 (2012), arXiv: 1306.4124.

    Article  ADS  Google Scholar 

  30. Y. Lin, R. Soler, O. Engvold, J. L. Ballester, Ø. Langangen, R. Oliver, and L. H. M. Rouppe van der Voort, Astrophys. J. 704, 870 (2009), arXiv: 0909.2792.

    Article  ADS  Google Scholar 

  31. T. Van Doorsselaere, A. K. Srivastava, P. Antolin, N. Magyar, S. Vasheghani Farahani, H. Tian, D. Kolotkov, L. Ofman, M. Guo, I. Arregui, I. De Moortel, and D. Pascoe, Space Sci. Rev. 216, 140 (2020), arXiv: 2012.01371.

    Article  ADS  Google Scholar 

  32. L. Melis, R. Soler, and J. L. Ballester, Astron. Astrophys. 650, A45 (2021), arXiv: 2103.16599.

    Article  ADS  Google Scholar 

  33. A. K. Srivastava, J. L. Ballester, P. S. Cally, M. Carlsson, M. Goossens, D. B. Jess, E. Khomenko, M. Mathioudakis, and T. V. Zaqarashvili, J. Geo. Res. 126, e029097 (2021).

    Google Scholar 

  34. Y. Lin, O. Engvold, L. H. M. Rouppe van der Voort, and M. van Noort, Sol. Phys. 246, 65 (2007).

    Article  ADS  Google Scholar 

  35. V. M. Nakariakov, and D. Y. Kolotkov, Annu. Rev. Astron. Astrophys. 58, 441 (2020).

    Article  ADS  Google Scholar 

  36. Z. Liu, J. Xu, B. Z. Gu, S. Wang, J. Q. You, L. X. Shen, R. W. Lu, Z. Y. Jin, L. F. Chen, K. Lou, Z. Li, G. Q. Liu, Z. Xu, C. H. Rao, Q. Q. Hu, R. F. Li, H. W. Fu, F. Wang, M. X. Bao, M. C. Wu, and B. R. Zhang, Res. Astron. Astrophys. 14, 705 (2014).

    Article  ADS  Google Scholar 

  37. X. L. Yan, Z. Liu, J. Zhang, and Z. Xu, Sci. China Tech. Sci. 63, 1656 (2020), arXiv: 1910.09127.

    Article  Google Scholar 

  38. J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, C. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. Hurlburt, N. L. Katz, G. D. Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeaters, S. Mitchell, R. A. Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, T. D. Tarbell, J. P. Wuelser, C. J. Wolfson, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. Caldwell, E. E. Deluca, R. Gates, L. Golub, S. Park, W. A. Podgorski, R. I. Bush, P. H. Scherrer, M. A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beardsley, M. Clapp, J. Lang, and N. Waltham, Sol. Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  39. J. C. Xue, J. C. Vial, Y. Su, H. Li, Z. Xu, Y. N. Su, T. H. Zhou, and Z. T. Li, Res. Astron. Astrophys. 21, 222 (2021).

    Article  ADS  Google Scholar 

  40. G. H. Fisher, and B. T. Welsch, Subsurf. Atmosph. Influe. Solar Act. 383, 373 (2008).

    ADS  Google Scholar 

  41. Y. H. Zhou, C. Xia, R. Keppens, C. Fang, and P. F. Chen, Astrophys. J. 856, 179 (2018), arXiv: 1803.03385.

    Article  ADS  Google Scholar 

  42. A. N. Afanasyev, T. Van Doorsselaere, and V. M. Nakariakov, Astron. Astrophys. 633, L8 (2020), arXiv: 1912.07980.

    Article  ADS  Google Scholar 

  43. T. Van Doorsselaere, V. M. Nakariakov, and E. Verwichte, Astrophys. J. 676, L73 (2008).

    Article  ADS  Google Scholar 

  44. J. Terradas, I. Arregui, R. Oliver, and J. L. Ballester, Astrophys. J. 678, L153 (2008), arXiv: 0803.2649.

    Article  ADS  Google Scholar 

  45. H. Tian, S. W. McIntosh, T. Wang, L. Ofman, B. De Pontieu, D. E. Innes, and H. Peter, Astrophys. J. 759, 144 (2012), arXiv: 1209.5286.

    Article  ADS  Google Scholar 

  46. S. Anfinogentov, G. Nisticò, and V. M. Nakariakov, Astron. Astrophys. 560, A107 (2013).

    Article  ADS  Google Scholar 

  47. S. A. Anfinogentov, V. M. Nakariakov, and G. Nisticò, Astron. Astrophys. 583, A136 (2015), arXiv: 1509.05519.

    Article  ADS  Google Scholar 

  48. A. J. Díaz, R. Oliver, R. Erdélyi, and J. L. Ballester, Astron. Astrophys. 379, 1083 (2001).

    Article  ADS  Google Scholar 

  49. M. Goossens, T. Van Doorsselaere, R. Soler, and G. Verth, Astrophys. J. 768, 191 (2013).

    Article  ADS  Google Scholar 

  50. D. Y. Kolotkov, D. I. Zavershinskii, and V. M. Nakariakov, arXiv: 2111.02370.

  51. H. Tian, E. E. DeLuca, S. R. Cranmer, B. De Pontieu, H. Peter, J. Martínez-Sykora, L. Golub, S. McKillop, K. K. Reeves, M. P. Miralles, P. McCauley, S. Saar, P. Testa, M. Weber, N. Murphy, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T. D. Tarbell, J. P. Wuelser, L. Kleint, C. Kankelborg, S. Jaeggli, M. Carlsson, V. Hansteen, and S. W. McIntosh, Science 346, 1255711 (2014), arXiv: 1410.6143.

    Article  Google Scholar 

  52. P. S. Joarder, V. M. Nakariakov, and B. Roberts, Sol. Phys. 173, 81 (1997).

    Article  ADS  Google Scholar 

  53. D. Yuan, and T. V. Doorsselaere, Astrophys. J. Suppl. Ser. 223, 23 (2016), arXiv: 1603.01632.

    Article  ADS  Google Scholar 

  54. D. Yuan, and T. V. Doorsselaere, Astrophys. J. Suppl. Ser. 223, 24 (2016), arXiv: 1602.07598.

    Article  ADS  Google Scholar 

  55. Y. Zhang, O. Engvold, and S. L. Keil, Sol. Phys. 132, 63 (1991).

    Article  ADS  Google Scholar 

  56. W. Liu, L. Ofman, N. V. Nitta, M. J. Aschwanden, C. J. Schrijver, A. M. Title, and T. D. Tarbell, Astrophys. J. 753, 52 (2012), arXiv: 1204.5470.

    Article  ADS  Google Scholar 

  57. Z. K. Xue, X. L. Yan, Z. Q. Qu, and L. Zhao, in Transverse oscillation of a filament triggered by an extreme ultraviolet wave: Proceedings of the Solar Polarization 7, Astronomical Society of the Pacific Conference Series, Kunming, 2013.

  58. V. M. Nakariakov, S. A. Anfinogentov, P. Antolin, R. Jain, D. Y. Kolotkov, E. G. Kupriyanova, D. Li, N. Magyar, G. Nisticò, D. J. Pascoe, A. K. Srivastava, J. Terradas, S. Vasheghani Farahani, G. Verth, D. Yuan, and I. V. Zimovets, Space Sci. Rev. 217, 73 (2021), arXiv: 2109.11220.

    Article  ADS  Google Scholar 

  59. G. L. Withbroe, and R. W. Noyes, Annu. Rev. Astron. Astrophys. 15, 363 (1977).

    Article  ADS  Google Scholar 

  60. M. J. Aschwanden, A. Winebarger, D. Tsiklauri, and H. Peter, Astrophys. J. 659, 1673 (2007).

    Article  ADS  Google Scholar 

  61. J. A. Klimchuk, Sol. Phys. 234, 41 (2006), arXiv: astro-ph/0511841.

    Article  ADS  Google Scholar 

  62. J. A. Klimchuk, Philosoph. Trans. R. Soc. London Ser. A, 373, 20140256 (2015).

    ADS  Google Scholar 

  63. C. H. Rao, N. T. Gu, X. J. Rao, C. Li, L. Q. Zhang, J. L. Huang, L. Kong, M. Zhang, Y. T. Cheng, Y. Pu, H. Bao, Y. M. Guo, Y. Y. Liu, J. S. Yang, L. B. Zhong, C. J. Wang, K. Fang, X. J. Zhang, D. H. Chen, C. Wang, X. L. Fan, Z. W. Yan, K. L. Chen, X. Y. Wei, L. Zhu, H. Liu, Y. J. Wan, H. Xian, and W. L. Ma, Sci. China-Phys. Mech. Astron. 63, 109631 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Li or Ding Yuan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11973092, 12173012, 12111530078, 12073081, U1631242, 11820101002, 11790302, and U1731241), and the CAS Strategic Priority Research Program on Space Science (Grant Nos. XDA15052200, XDA15320103, and XDA15320301). Dong Li is also supported by the CAS Key Laboratory of Solar Activity (Grant No. KLSA202003), and the Surface Project of Jiangsu Province (Grant No. BK20211402). Ding Yuan is supported by the Shenzhen Technology Project (Grant No. GXWD20201230155427003-20200804151658001). The Laboratory No. is 2010DP173032. The authors thank the NVST and SDO/AIA teams for providing the data.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Supplementary material, approximately 4.24 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Xue, J., Yuan, D. et al. Persistent fast kink magnetohydrodynamic waves detected in a quiescent prominence. Sci. China Phys. Mech. Astron. 65, 239611 (2022). https://doi.org/10.1007/s11433-021-1836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1836-y

Keywords

PACS number(s)

Navigation